Nano-cubes over nano-spheres: shape dependent study of silver nanomaterial for biological applications

Silver nanomaterials (AgNMs) ubiquitously known for their biological applications are studied here in terms of their shape-dependent antibacterial and anti-biofilm effect. Chemically synthesized nano-cubes (AgNCs) with size range around 150–200 nm were compared for their biological activity with com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of materials science 2021-09, Vol.44 (3), p.191, Article 191
Hauptverfasser: Agrawal, Neha, Mishra, Priyanka, Ranjan, Rahul, Awasthi, Punam, Srivastava, Alok, Prasad, Deepti, Kohli, Ekta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Silver nanomaterials (AgNMs) ubiquitously known for their biological applications are studied here in terms of their shape-dependent antibacterial and anti-biofilm effect. Chemically synthesized nano-cubes (AgNCs) with size range around 150–200 nm were compared for their biological activity with commercial nano-sphere (AgNS) of comparable size (~160 nm). The antibacterial activity against both Escherichia coli and Staphylococcus aureus showed higher activity for nano-cubes compared with nano-spheres.The synergistic role of AgNMs with antibiotic ampicillin was also found promising. A four times enhancement and an increase of nearly 25% of antibiotic activity at 0.0625 mg ml –1 concentration was found with 0.05 mg ml –1 of AgNCs in agar and broth media, respectively. Anti-biofilm effect towards E. coli and S . aureus was also evaluated. AgNCs showed equal importance in biofilm disruption with 20% inhibition activity, which was yet again found better in-comparison with AgNSs. The study shows that AgNCs with distinct faces and edges could show efficient anti-bacterial effect and so such intelligently designed material could pave path for imminent medical challenges.
ISSN:0250-4707
0973-7669
DOI:10.1007/s12034-021-02487-2