A Decision Fusion SWT-RF Method for Rolling Bearing Enhanced Diagnosis under Low-quality Data

Low-quality data, including insufficient samples and low signal to noise ratio (SNR), restrict the effective application of intelligent diagnostic methods based on deep learning. In this study, a new rolling bearing enhanced diagnostic method is proposed based on swin-transformer (SWT) and ReliefF (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2024-01, Vol.73, p.1-1
Hauptverfasser: Chen, Jiayu, Lin, Cuiying, Lu, Qinhua, Yang, Chaoqi, Li, Peng, Yu, Pingchao, Ge, Hongjuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 73
creator Chen, Jiayu
Lin, Cuiying
Lu, Qinhua
Yang, Chaoqi
Li, Peng
Yu, Pingchao
Ge, Hongjuan
description Low-quality data, including insufficient samples and low signal to noise ratio (SNR), restrict the effective application of intelligent diagnostic methods based on deep learning. In this study, a new rolling bearing enhanced diagnostic method is proposed based on swin-transformer (SWT) and ReliefF (RF) combined with Dempster-Shafer (DS) evidence theory. First, SWT is improved for adaptive deep feature mining of the vibration signal. Meanwhile, to enhance the quality of features, RF is introduced to optimize the deep fault features output by the global average pooling layer, which helps improve the classifier performance. Then, the DS evidence theory-based decision fusion strategy is designed to realize the fusion of different axial signals at the decision level, which enhances fault knowledge threshold and further improves the diagnostic ability. Finally, the bearing cases with data collected from the accelerated life degradation and different distributions are studied. The results reveal that the proposed method can adaptively mine fault features with low-quality data and realize efficient enhance diagnosis.
doi_str_mv 10.1109/TIM.2024.3350130
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2920297603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10381887</ieee_id><sourcerecordid>2920297603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-ef48be07c8e4b7845953c55e9b1763015b508678c56182c05b34c2b66cff6d4b3</originalsourceid><addsrcrecordid>eNpNkDtPwzAYRS0EEqWwMzBYYk75HD8zlj6gUiukUsSEIsdx2lQhbu1EqP-elHZgusu590oHoXsCA0IgeVrNFoMYYjaglAOhcIF6hHMZJULEl6gHQFSUMC6u0U0IWwCQgske-hrisTVlKF2Np-1fvH-uouUUL2yzcTkunMdLV1VlvcbPVvtjTuqNro3N8bjU69qFMuC2zq3Hc_cT7Vtdlc0Bj3Wjb9FVoatg787ZRx_TyWr0Gs3fXmaj4TwycRI3kS2YyixIoyzLpGI84dRwbpOMSEGB8IyDElIZLoiKDfCMMhNnQpiiEDnLaB89nnZ33u1bG5p061pfd5dpdwBxIgXQjoITZbwLwdsi3fnyW_tDSiA9Skw7ielRYnqW2FUeTpXSWvsPp4ooJekvHeZryA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920297603</pqid></control><display><type>article</type><title>A Decision Fusion SWT-RF Method for Rolling Bearing Enhanced Diagnosis under Low-quality Data</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Jiayu ; Lin, Cuiying ; Lu, Qinhua ; Yang, Chaoqi ; Li, Peng ; Yu, Pingchao ; Ge, Hongjuan</creator><creatorcontrib>Chen, Jiayu ; Lin, Cuiying ; Lu, Qinhua ; Yang, Chaoqi ; Li, Peng ; Yu, Pingchao ; Ge, Hongjuan</creatorcontrib><description>Low-quality data, including insufficient samples and low signal to noise ratio (SNR), restrict the effective application of intelligent diagnostic methods based on deep learning. In this study, a new rolling bearing enhanced diagnostic method is proposed based on swin-transformer (SWT) and ReliefF (RF) combined with Dempster-Shafer (DS) evidence theory. First, SWT is improved for adaptive deep feature mining of the vibration signal. Meanwhile, to enhance the quality of features, RF is introduced to optimize the deep fault features output by the global average pooling layer, which helps improve the classifier performance. Then, the DS evidence theory-based decision fusion strategy is designed to realize the fusion of different axial signals at the decision level, which enhances fault knowledge threshold and further improves the diagnostic ability. Finally, the bearing cases with data collected from the accelerated life degradation and different distributions are studied. The results reveal that the proposed method can adaptively mine fault features with low-quality data and realize efficient enhance diagnosis.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2024.3350130</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Adaptive feature learning ; Classification tree analysis ; Data models ; Decision theory ; Fault diagnosis ; Feature extraction ; Low SNR ; Multi-sensors ; Roller bearings ; Rolling bearings ; Rotating machinery ; Signal to noise ratio</subject><ispartof>IEEE transactions on instrumentation and measurement, 2024-01, Vol.73, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-ef48be07c8e4b7845953c55e9b1763015b508678c56182c05b34c2b66cff6d4b3</citedby><cites>FETCH-LOGICAL-c292t-ef48be07c8e4b7845953c55e9b1763015b508678c56182c05b34c2b66cff6d4b3</cites><orcidid>0000-0001-6616-3310 ; 0000-0002-1217-5014 ; 0000-0003-3691-9142 ; 0000-0002-8286-7761 ; 0000-0002-9974-9462 ; 0000-0002-5017-6114 ; 0000-0003-3496-2518</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10381887$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10381887$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Jiayu</creatorcontrib><creatorcontrib>Lin, Cuiying</creatorcontrib><creatorcontrib>Lu, Qinhua</creatorcontrib><creatorcontrib>Yang, Chaoqi</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Yu, Pingchao</creatorcontrib><creatorcontrib>Ge, Hongjuan</creatorcontrib><title>A Decision Fusion SWT-RF Method for Rolling Bearing Enhanced Diagnosis under Low-quality Data</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Low-quality data, including insufficient samples and low signal to noise ratio (SNR), restrict the effective application of intelligent diagnostic methods based on deep learning. In this study, a new rolling bearing enhanced diagnostic method is proposed based on swin-transformer (SWT) and ReliefF (RF) combined with Dempster-Shafer (DS) evidence theory. First, SWT is improved for adaptive deep feature mining of the vibration signal. Meanwhile, to enhance the quality of features, RF is introduced to optimize the deep fault features output by the global average pooling layer, which helps improve the classifier performance. Then, the DS evidence theory-based decision fusion strategy is designed to realize the fusion of different axial signals at the decision level, which enhances fault knowledge threshold and further improves the diagnostic ability. Finally, the bearing cases with data collected from the accelerated life degradation and different distributions are studied. The results reveal that the proposed method can adaptively mine fault features with low-quality data and realize efficient enhance diagnosis.</description><subject>Adaptation models</subject><subject>Adaptive feature learning</subject><subject>Classification tree analysis</subject><subject>Data models</subject><subject>Decision theory</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>Low SNR</subject><subject>Multi-sensors</subject><subject>Roller bearings</subject><subject>Rolling bearings</subject><subject>Rotating machinery</subject><subject>Signal to noise ratio</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDtPwzAYRS0EEqWwMzBYYk75HD8zlj6gUiukUsSEIsdx2lQhbu1EqP-elHZgusu590oHoXsCA0IgeVrNFoMYYjaglAOhcIF6hHMZJULEl6gHQFSUMC6u0U0IWwCQgske-hrisTVlKF2Np-1fvH-uouUUL2yzcTkunMdLV1VlvcbPVvtjTuqNro3N8bjU69qFMuC2zq3Hc_cT7Vtdlc0Bj3Wjb9FVoatg787ZRx_TyWr0Gs3fXmaj4TwycRI3kS2YyixIoyzLpGI84dRwbpOMSEGB8IyDElIZLoiKDfCMMhNnQpiiEDnLaB89nnZ33u1bG5p061pfd5dpdwBxIgXQjoITZbwLwdsi3fnyW_tDSiA9Skw7ielRYnqW2FUeTpXSWvsPp4ooJekvHeZryA</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Chen, Jiayu</creator><creator>Lin, Cuiying</creator><creator>Lu, Qinhua</creator><creator>Yang, Chaoqi</creator><creator>Li, Peng</creator><creator>Yu, Pingchao</creator><creator>Ge, Hongjuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6616-3310</orcidid><orcidid>https://orcid.org/0000-0002-1217-5014</orcidid><orcidid>https://orcid.org/0000-0003-3691-9142</orcidid><orcidid>https://orcid.org/0000-0002-8286-7761</orcidid><orcidid>https://orcid.org/0000-0002-9974-9462</orcidid><orcidid>https://orcid.org/0000-0002-5017-6114</orcidid><orcidid>https://orcid.org/0000-0003-3496-2518</orcidid></search><sort><creationdate>20240101</creationdate><title>A Decision Fusion SWT-RF Method for Rolling Bearing Enhanced Diagnosis under Low-quality Data</title><author>Chen, Jiayu ; Lin, Cuiying ; Lu, Qinhua ; Yang, Chaoqi ; Li, Peng ; Yu, Pingchao ; Ge, Hongjuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-ef48be07c8e4b7845953c55e9b1763015b508678c56182c05b34c2b66cff6d4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Adaptive feature learning</topic><topic>Classification tree analysis</topic><topic>Data models</topic><topic>Decision theory</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>Low SNR</topic><topic>Multi-sensors</topic><topic>Roller bearings</topic><topic>Rolling bearings</topic><topic>Rotating machinery</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jiayu</creatorcontrib><creatorcontrib>Lin, Cuiying</creatorcontrib><creatorcontrib>Lu, Qinhua</creatorcontrib><creatorcontrib>Yang, Chaoqi</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Yu, Pingchao</creatorcontrib><creatorcontrib>Ge, Hongjuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Jiayu</au><au>Lin, Cuiying</au><au>Lu, Qinhua</au><au>Yang, Chaoqi</au><au>Li, Peng</au><au>Yu, Pingchao</au><au>Ge, Hongjuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Decision Fusion SWT-RF Method for Rolling Bearing Enhanced Diagnosis under Low-quality Data</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>73</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Low-quality data, including insufficient samples and low signal to noise ratio (SNR), restrict the effective application of intelligent diagnostic methods based on deep learning. In this study, a new rolling bearing enhanced diagnostic method is proposed based on swin-transformer (SWT) and ReliefF (RF) combined with Dempster-Shafer (DS) evidence theory. First, SWT is improved for adaptive deep feature mining of the vibration signal. Meanwhile, to enhance the quality of features, RF is introduced to optimize the deep fault features output by the global average pooling layer, which helps improve the classifier performance. Then, the DS evidence theory-based decision fusion strategy is designed to realize the fusion of different axial signals at the decision level, which enhances fault knowledge threshold and further improves the diagnostic ability. Finally, the bearing cases with data collected from the accelerated life degradation and different distributions are studied. The results reveal that the proposed method can adaptively mine fault features with low-quality data and realize efficient enhance diagnosis.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2024.3350130</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6616-3310</orcidid><orcidid>https://orcid.org/0000-0002-1217-5014</orcidid><orcidid>https://orcid.org/0000-0003-3691-9142</orcidid><orcidid>https://orcid.org/0000-0002-8286-7761</orcidid><orcidid>https://orcid.org/0000-0002-9974-9462</orcidid><orcidid>https://orcid.org/0000-0002-5017-6114</orcidid><orcidid>https://orcid.org/0000-0003-3496-2518</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2024-01, Vol.73, p.1-1
issn 0018-9456
1557-9662
language eng
recordid cdi_proquest_journals_2920297603
source IEEE Electronic Library (IEL)
subjects Adaptation models
Adaptive feature learning
Classification tree analysis
Data models
Decision theory
Fault diagnosis
Feature extraction
Low SNR
Multi-sensors
Roller bearings
Rolling bearings
Rotating machinery
Signal to noise ratio
title A Decision Fusion SWT-RF Method for Rolling Bearing Enhanced Diagnosis under Low-quality Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T07%3A56%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Decision%20Fusion%20SWT-RF%20Method%20for%20Rolling%20Bearing%20Enhanced%20Diagnosis%20under%20Low-quality%20Data&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Chen,%20Jiayu&rft.date=2024-01-01&rft.volume=73&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2024.3350130&rft_dat=%3Cproquest_RIE%3E2920297603%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920297603&rft_id=info:pmid/&rft_ieee_id=10381887&rfr_iscdi=true