A Decision Fusion SWT-RF Method for Rolling Bearing Enhanced Diagnosis under Low-quality Data

Low-quality data, including insufficient samples and low signal to noise ratio (SNR), restrict the effective application of intelligent diagnostic methods based on deep learning. In this study, a new rolling bearing enhanced diagnostic method is proposed based on swin-transformer (SWT) and ReliefF (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2024-01, Vol.73, p.1-1
Hauptverfasser: Chen, Jiayu, Lin, Cuiying, Lu, Qinhua, Yang, Chaoqi, Li, Peng, Yu, Pingchao, Ge, Hongjuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Low-quality data, including insufficient samples and low signal to noise ratio (SNR), restrict the effective application of intelligent diagnostic methods based on deep learning. In this study, a new rolling bearing enhanced diagnostic method is proposed based on swin-transformer (SWT) and ReliefF (RF) combined with Dempster-Shafer (DS) evidence theory. First, SWT is improved for adaptive deep feature mining of the vibration signal. Meanwhile, to enhance the quality of features, RF is introduced to optimize the deep fault features output by the global average pooling layer, which helps improve the classifier performance. Then, the DS evidence theory-based decision fusion strategy is designed to realize the fusion of different axial signals at the decision level, which enhances fault knowledge threshold and further improves the diagnostic ability. Finally, the bearing cases with data collected from the accelerated life degradation and different distributions are studied. The results reveal that the proposed method can adaptively mine fault features with low-quality data and realize efficient enhance diagnosis.
ISSN:0018-9456
1557-9662
DOI:10.1109/TIM.2024.3350130