The generalized Friedmann model as a self-similar solution of Vlasov–Poisson equation system
We derive from the principle of least action (a slight generalization of the classical one) the right-hand sides of Maxwell and Einstein equations for a system on charged particles in the framework of the Vlasov–Maxwell–Einstein system of equations. The reduced Euler equations are derived using hydr...
Gespeichert in:
Veröffentlicht in: | European physical journal plus 2021-06, Vol.136 (6), p.670, Article 670 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 670 |
container_title | European physical journal plus |
container_volume | 136 |
creator | Vedenyapin, V. V. Fimin, N. N. Chechetkin, V. M. |
description | We derive from the principle of least action (a slight generalization of the classical one) the right-hand sides of Maxwell and Einstein equations for a system on charged particles in the framework of the Vlasov–Maxwell–Einstein system of equations. The reduced Euler equations are derived using hydrodynamic substitution and are solved within the self-similar class, as a consequence of the Vlasov system of equations. The properties of the generalized non-relativistic Friedmann–Milne–McCrea model are analyzed in context of Gurzadyan’s theorem on the general function satisfying the equivalency of sphere’s and point mass’s gravity. |
doi_str_mv | 10.1140/epjp/s13360-021-01659-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920256910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920256910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-e6fe6d9c3fe0fee26586f5fde495f95c068f47f027229a397dc47567b9d82df03</originalsourceid><addsrcrecordid>eNqFkMFKw0AQhoMoWGqfwQXPa3c3m032KMWqUNBD9eiyJrM1JcmmO6lQT76Db-iTmDaC3pzLDDP__w98UXTO2SXnkk2hXbdT5HGsGGWCU8ZVoml6FI0E14wmUsrjP_NpNEFcs76k5lLLUfS8fAWyggaCrcp3KMg8lFDUtmlI7QuoiEViCULlKJZ1WdlA0FfbrvQN8Y48VRb929fH54MvEfsdbLb2cMQddlCfRSfOVgiTnz6OHufXy9ktXdzf3M2uFjSPY9lRUA5UofPYAXMAQiWZcokrQOrE6SRnKnMydUykQmgb67TIZZqo9EUXmSgci8fRxZDbBr_ZAnZm7beh6V8aoQUTidJ8r0oHVR48YgBn2lDWNuwMZ2bP0-x5moGn6XmaA0-T9s5scGLvaFYQfvP_s34DTMF-XA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920256910</pqid></control><display><type>article</type><title>The generalized Friedmann model as a self-similar solution of Vlasov–Poisson equation system</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Vedenyapin, V. V. ; Fimin, N. N. ; Chechetkin, V. M.</creator><creatorcontrib>Vedenyapin, V. V. ; Fimin, N. N. ; Chechetkin, V. M.</creatorcontrib><description>We derive from the principle of least action (a slight generalization of the classical one) the right-hand sides of Maxwell and Einstein equations for a system on charged particles in the framework of the Vlasov–Maxwell–Einstein system of equations. The reduced Euler equations are derived using hydrodynamic substitution and are solved within the self-similar class, as a consequence of the Vlasov system of equations. The properties of the generalized non-relativistic Friedmann–Milne–McCrea model are analyzed in context of Gurzadyan’s theorem on the general function satisfying the equivalency of sphere’s and point mass’s gravity.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-021-01659-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Approximation ; Atomic ; Charged particles ; Complex Systems ; Condensed Matter Physics ; Einstein equations ; Electromagnetism ; Euler-Lagrange equation ; Fluid mechanics ; Focus Point on Modified Gravity Theories and Cosmology ; Mathematical and Computational Physics ; Mathematical models ; Molecular ; Optical and Plasma Physics ; Ordinary differential equations ; Physics ; Physics and Astronomy ; Poisson equation ; Principle of least action ; Regular Article ; Self-similarity ; Theoretical ; Variables ; Velocity</subject><ispartof>European physical journal plus, 2021-06, Vol.136 (6), p.670, Article 670</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-e6fe6d9c3fe0fee26586f5fde495f95c068f47f027229a397dc47567b9d82df03</citedby><cites>FETCH-LOGICAL-c334t-e6fe6d9c3fe0fee26586f5fde495f95c068f47f027229a397dc47567b9d82df03</cites><orcidid>0000-0003-2629-5380</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-021-01659-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920256910?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,21369,27905,27906,33725,41469,42538,43786,51300,64364,64368,72218</link.rule.ids></links><search><creatorcontrib>Vedenyapin, V. V.</creatorcontrib><creatorcontrib>Fimin, N. N.</creatorcontrib><creatorcontrib>Chechetkin, V. M.</creatorcontrib><title>The generalized Friedmann model as a self-similar solution of Vlasov–Poisson equation system</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>We derive from the principle of least action (a slight generalization of the classical one) the right-hand sides of Maxwell and Einstein equations for a system on charged particles in the framework of the Vlasov–Maxwell–Einstein system of equations. The reduced Euler equations are derived using hydrodynamic substitution and are solved within the self-similar class, as a consequence of the Vlasov system of equations. The properties of the generalized non-relativistic Friedmann–Milne–McCrea model are analyzed in context of Gurzadyan’s theorem on the general function satisfying the equivalency of sphere’s and point mass’s gravity.</description><subject>Applied and Technical Physics</subject><subject>Approximation</subject><subject>Atomic</subject><subject>Charged particles</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Einstein equations</subject><subject>Electromagnetism</subject><subject>Euler-Lagrange equation</subject><subject>Fluid mechanics</subject><subject>Focus Point on Modified Gravity Theories and Cosmology</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Ordinary differential equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Poisson equation</subject><subject>Principle of least action</subject><subject>Regular Article</subject><subject>Self-similarity</subject><subject>Theoretical</subject><subject>Variables</subject><subject>Velocity</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkMFKw0AQhoMoWGqfwQXPa3c3m032KMWqUNBD9eiyJrM1JcmmO6lQT76Db-iTmDaC3pzLDDP__w98UXTO2SXnkk2hXbdT5HGsGGWCU8ZVoml6FI0E14wmUsrjP_NpNEFcs76k5lLLUfS8fAWyggaCrcp3KMg8lFDUtmlI7QuoiEViCULlKJZ1WdlA0FfbrvQN8Y48VRb929fH54MvEfsdbLb2cMQddlCfRSfOVgiTnz6OHufXy9ktXdzf3M2uFjSPY9lRUA5UofPYAXMAQiWZcokrQOrE6SRnKnMydUykQmgb67TIZZqo9EUXmSgci8fRxZDbBr_ZAnZm7beh6V8aoQUTidJ8r0oHVR48YgBn2lDWNuwMZ2bP0-x5moGn6XmaA0-T9s5scGLvaFYQfvP_s34DTMF-XA</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Vedenyapin, V. V.</creator><creator>Fimin, N. N.</creator><creator>Chechetkin, V. M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-2629-5380</orcidid></search><sort><creationdate>20210601</creationdate><title>The generalized Friedmann model as a self-similar solution of Vlasov–Poisson equation system</title><author>Vedenyapin, V. V. ; Fimin, N. N. ; Chechetkin, V. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-e6fe6d9c3fe0fee26586f5fde495f95c068f47f027229a397dc47567b9d82df03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied and Technical Physics</topic><topic>Approximation</topic><topic>Atomic</topic><topic>Charged particles</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Einstein equations</topic><topic>Electromagnetism</topic><topic>Euler-Lagrange equation</topic><topic>Fluid mechanics</topic><topic>Focus Point on Modified Gravity Theories and Cosmology</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Ordinary differential equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Poisson equation</topic><topic>Principle of least action</topic><topic>Regular Article</topic><topic>Self-similarity</topic><topic>Theoretical</topic><topic>Variables</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vedenyapin, V. V.</creatorcontrib><creatorcontrib>Fimin, N. N.</creatorcontrib><creatorcontrib>Chechetkin, V. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vedenyapin, V. V.</au><au>Fimin, N. N.</au><au>Chechetkin, V. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The generalized Friedmann model as a self-similar solution of Vlasov–Poisson equation system</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>136</volume><issue>6</issue><spage>670</spage><pages>670-</pages><artnum>670</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>We derive from the principle of least action (a slight generalization of the classical one) the right-hand sides of Maxwell and Einstein equations for a system on charged particles in the framework of the Vlasov–Maxwell–Einstein system of equations. The reduced Euler equations are derived using hydrodynamic substitution and are solved within the self-similar class, as a consequence of the Vlasov system of equations. The properties of the generalized non-relativistic Friedmann–Milne–McCrea model are analyzed in context of Gurzadyan’s theorem on the general function satisfying the equivalency of sphere’s and point mass’s gravity.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-021-01659-7</doi><orcidid>https://orcid.org/0000-0003-2629-5380</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5444 |
ispartof | European physical journal plus, 2021-06, Vol.136 (6), p.670, Article 670 |
issn | 2190-5444 2190-5444 |
language | eng |
recordid | cdi_proquest_journals_2920256910 |
source | SpringerLink Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Applied and Technical Physics Approximation Atomic Charged particles Complex Systems Condensed Matter Physics Einstein equations Electromagnetism Euler-Lagrange equation Fluid mechanics Focus Point on Modified Gravity Theories and Cosmology Mathematical and Computational Physics Mathematical models Molecular Optical and Plasma Physics Ordinary differential equations Physics Physics and Astronomy Poisson equation Principle of least action Regular Article Self-similarity Theoretical Variables Velocity |
title | The generalized Friedmann model as a self-similar solution of Vlasov–Poisson equation system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A51%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20generalized%20Friedmann%20model%20as%20a%20self-similar%20solution%20of%20Vlasov%E2%80%93Poisson%20equation%20system&rft.jtitle=European%20physical%20journal%20plus&rft.au=Vedenyapin,%20V.%20V.&rft.date=2021-06-01&rft.volume=136&rft.issue=6&rft.spage=670&rft.pages=670-&rft.artnum=670&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-021-01659-7&rft_dat=%3Cproquest_cross%3E2920256910%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920256910&rft_id=info:pmid/&rfr_iscdi=true |