The generalized Friedmann model as a self-similar solution of Vlasov–Poisson equation system

We derive from the principle of least action (a slight generalization of the classical one) the right-hand sides of Maxwell and Einstein equations for a system on charged particles in the framework of the Vlasov–Maxwell–Einstein system of equations. The reduced Euler equations are derived using hydr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus 2021-06, Vol.136 (6), p.670, Article 670
Hauptverfasser: Vedenyapin, V. V., Fimin, N. N., Chechetkin, V. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We derive from the principle of least action (a slight generalization of the classical one) the right-hand sides of Maxwell and Einstein equations for a system on charged particles in the framework of the Vlasov–Maxwell–Einstein system of equations. The reduced Euler equations are derived using hydrodynamic substitution and are solved within the self-similar class, as a consequence of the Vlasov system of equations. The properties of the generalized non-relativistic Friedmann–Milne–McCrea model are analyzed in context of Gurzadyan’s theorem on the general function satisfying the equivalency of sphere’s and point mass’s gravity.
ISSN:2190-5444
2190-5444
DOI:10.1140/epjp/s13360-021-01659-7