Bohr Hamiltonian with hyperbolic Pöschl-Teller potential for triaxial nuclei
. The Bohr Hamiltonian for the triaxial nuclei with Pöschl-Teller potential for the β -part and a harmonic oscillator around γ = π 6 for the γ -part is solved. An approximate separation of the variables occurs when the potential has the form v ( β , γ ) = u ( β ) + v ( γ ) . The β -part has been sol...
Gespeichert in:
Veröffentlicht in: | European physical journal plus 2017-04, Vol.132 (4), p.171, Article 171 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | .
The Bohr Hamiltonian for the triaxial nuclei with Pöschl-Teller potential for the
β
-part and a harmonic oscillator around
γ
=
π
6
for the
γ
-part is solved. An approximate separation of the variables occurs when the potential has the form
v
(
β
,
γ
)
=
u
(
β
)
+
v
(
γ
)
. The
β
-part has been solved using the Nikiforov-Uvarov method. The total wave function has been derived and an expression for the total energy is represented. The electric quadrupole transition rates are evaluated. The spectra and
B
(
E
2) s are compared to the experimental data. |
---|---|
ISSN: | 2190-5444 2190-5444 |
DOI: | 10.1140/epjp/i2017-11445-5 |