Spooky black holes: Gravitational self-energy and space curvature
It is shown that space curvature can be disposed of by properly taking into account gravitational self-energies. This leads to a parameter-free modification of Newton’s law, violating Gauss theorem, which accounts for the crucial tests of gravitation in a flat space. Strong gravitational fields enta...
Gespeichert in:
Veröffentlicht in: | European physical journal plus 2011-05, Vol.126 (5), p.48, Article 48 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is shown that space curvature can be disposed of by properly taking into account gravitational self-energies. This leads to a parameter-free modification of Newton’s law, violating Gauss theorem, which accounts for the crucial tests of gravitation in a flat space. Strong gravitational fields entail opposing big gravitational self-energies. The negative gravitational self-energy of a gravitational composite object, which results in a mass defect with respect to the sum of the constituents, thus cancels out the latter at the Schwarzschild radius. Hence a black hole, possible end result of the radiative shrinkage of a star, having zero total energy, cannot any longer interact with other objects. Baryon number non-conservation may result. |
---|---|
ISSN: | 2190-5444 2190-5444 |
DOI: | 10.1140/epjp/i2011-11048-2 |