Evaluating the Effects of Land Use on Headwater Wetland Amphibian Assemblages in Coastal Alabama

Anthropogenic land use is known to impact aquatic ecosystems in several ways, including increased frequency and intensity of floods, stream channel incision, sedimentation, and loss of microtopography. Amphibians are susceptible to changes in wetland and surrounding habitats. This study evaluated am...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wetlands (Wilmington, N.C.) N.C.), 2014-10, Vol.34 (5), p.917-926
Hauptverfasser: Alix, Diane M., Anderson, Christopher J., Grand, James B., Guyer, Craig
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Anthropogenic land use is known to impact aquatic ecosystems in several ways, including increased frequency and intensity of floods, stream channel incision, sedimentation, and loss of microtopography. Amphibians are susceptible to changes in wetland and surrounding habitats. This study evaluated amphibian assemblages of fifteen headwater slope wetlands in coastal Alabama across a gradient of land uses. Amphibians were surveyed on a seasonal basis and land use was delineated within wetland watersheds and within a 200-m buffer surrounding each wetland. Amphibian presence/absence and land use data were used to develop species occupancy models. Both urban and agricultural land use were shown to influence amphibian occurrence. Species richness ranged from five to ten species across sites; however, five species only occurred in wetlands surrounded by forested lands. Many species were detected more frequently on these wetlands compared to wetlands surrounded by urban or mixed land uses. Occupancy models showed Acris gryllus was negatively associated with the amount of agriculture within a buffer around the wetland. Hyla squirella , Lithobates clamitans , and L. sphenocephalus were positively associated with agricultural land within a watershed. Anaxyrus terrestris and the non-native Eleutherodactylus planirostris were positively associated with the amount of impervious surface area within the wetland buffer.
ISSN:0277-5212
1943-6246
DOI:10.1007/s13157-014-0553-y