Dirac equation in the curved spacetime and generalized uncertainty principle: A fundamental quantum mechanical approach with energy-dependent potentials
. In this work, we have obtained the solutions of the (1 + 1)-dimensional Dirac equation on a gravitational background within the generalized uncertainty principle. We have shown that how minimal length parameters effect the Dirac particle in a spacetime described by conformally flat metric. Also, s...
Gespeichert in:
Veröffentlicht in: | European physical journal plus 2019-07, Vol.134 (7), p.331, Article 331 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | .
In this work, we have obtained the solutions of the (1 + 1)-dimensional Dirac equation on a gravitational background within the generalized uncertainty principle. We have shown that how minimal length parameters effect the Dirac particle in a spacetime described by conformally flat metric. Also, supersymmetric quantum mechanics is used both to factorize the Dirac Hamiltonians and obtain new metric functions. Finally, it is observed that the energy-dependent potentials may be extended to the energy-dependent metric functions. |
---|---|
ISSN: | 2190-5444 2190-5444 |
DOI: | 10.1140/epjp/i2019-12694-x |