GaAs to Si Direct Wafer Bonding at T ≤ 220 °C in Ambient Air Via Nano-Bonding™ and Surface Energy Engineering (SEE)

When different semiconductors are integrated into hetero-junctions, native oxides generate interfacial defects and cause electronic recombination. Two state-of-the-art integration methods, hetero-epitaxy and Direct Wafer Bonding (DWB), require temperatures, T > 400 °C to reduce native oxides. How...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SILICON 2022-11, Vol.14 (17), p.11903-11926
Hauptverfasser: Gurijala, Aashi R., Chow, Amber A., Khanna, Shaurya, Suresh, Nikhil C., Penmatcha, Pranav V., Jandhyala, Siddarth V., Sahal, Mohammed, Peng, Wesley, Balasooriya, Thilina N., Ram, Sukesh, Diaz, Timoteo, Bertram, Michelle, Cornejo, Christian E., Kavanagh, Karen L., Culbertson, Robert J., Herbots, Nicole
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When different semiconductors are integrated into hetero-junctions, native oxides generate interfacial defects and cause electronic recombination. Two state-of-the-art integration methods, hetero-epitaxy and Direct Wafer Bonding (DWB), require temperatures, T > 400 °C to reduce native oxides. However, T > 400 °C leads to defects due to lattice and thermal expansion mismatches. In this work, DWB temperatures are lowered via Nano-Bonding™ (NB) at T ≤ 220 °C and P ≤ 60 kPa (9 psi). NB uses Surface Energy Engineering (SEE) at 300 K to modify surface energies (γ T ) to far-from-equilibrium states, so cross-bonding occurs with little thermal activation and compression. SEE modifies γ T and hydro-affinity (HA) via chemical etching, planarization, and termination that are optimized to yield 2-D Precursor Phases (2D-PP) metastable in ambient air and highly planar at the nano- and micro- scales. Complementary 2D-PPs nano-contact via carrier exchange from donor 2D-PP surfaces to acceptor ones. Here, NB models and SEE are applied to the DWB of GaAs to Si for photovoltaics. SEE modifies (1) the initial γ T0 and HA 0 measured via Three Liquid Contact Angle Analysis, (2) the oxygen coverage measured via High Resolution Ion Beam Analysis, and (3) the oxidation states measured via X-Ray Photoelectron Spectroscopy. SEE etches hydrophobic GaAs oxides with γ T  = 33.4 ± 1 mJ/m 2 , and terminates GaAs (100) with H + , rendering GaAs hydrophilic with γ T  = 60 ± 2 mJ/m 2 . Similarly, hydrophilic Si native oxides are etched into hydrophobic SiO 4 H 2 . H + - GaAs nano-bonds reproducibly to Si, as measured via Surface Acoustic Wave Microscopy, validating the NB model and SEE design.
ISSN:1876-990X
1876-9918
DOI:10.1007/s12633-022-01855-9