Improved DC Performances of Gate-all-around Si-Nanotube Tunnel FETs Using Gate-Source Overlap

In this work, a novel structure of Gate-all-Around Si-Nanotube Tunnel FET (GAA Si-NTTFET) has been proposed to improve its electrical characteristics by overlapping a portion of source with its gate terminal. Using 3-D TCAD simulation, it has been found that the on-state current and subthreshold swi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SILICON 2022-02, Vol.14 (4), p.1463-1470
Hauptverfasser: Singh, Avtar, Pandey, Chandan Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, a novel structure of Gate-all-Around Si-Nanotube Tunnel FET (GAA Si-NTTFET) has been proposed to improve its electrical characteristics by overlapping a portion of source with its gate terminal. Using 3-D TCAD simulation, it has been found that the on-state current and subthreshold swing of GAA Si-NTTFET can be significantly improved with an optimum length of gate-source overlapping (GSO) i.e. 27-nm only, thus not limiting the scalability of source region. Furthermore, GSO has also caused a reduction in the turn-on voltage of GAA Si-NTTFET which may help to scaling the supply voltages. Moreover, due to reduction in the lateral electric field at source-channel interface caused by GSO, the off-state current has been observed to be smaller as compared to the conventional GAA Si-NTTFET which eventually reduces the stand-by power dissipation. Additionally, the ambipolar current has also been found to be reduced in the proposed structure which makes it more suitable for its application in the digital circuits.
ISSN:1876-990X
1876-9918
DOI:10.1007/s12633-021-00957-0