Gel combustion synthesis of fluorine-doped tin oxide and its characteristics: applying D-optimal factorial design of experiment
Fluorine-doped tin oxide (FTO) nano-powders were synthesized by a gel combustion method. To analyse the effect of processing factors and their interactions and to achieve an equation for nano-powder particle size in terms of code factors, D-optimal factorial design was used. Stannous chloride penta-...
Gespeichert in:
Veröffentlicht in: | Bulletin of materials science 2019-06, Vol.42 (3), p.109, Article 109 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fluorine-doped tin oxide (FTO) nano-powders were synthesized by a gel combustion method. To analyse the effect of processing factors and their interactions and to achieve an equation for nano-powder particle size in terms of code factors, D-optimal factorial design was used. Stannous chloride penta-hydride, ammonium fluoride and citric acid were used to synthesize the FTO nano-powders. The structure, morphology and composition of the synthesized powders were characterized by X-ray diffraction, field emission scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. The results revealed the formation of homogenous FTO nano-powders with an average particle size of 20 nm and equiaxed morphology in the concentration of precursor 0.2, citric acid to precursor molar ratio of 1 and pH of 0.5. The average particle size increased as the concentration of the precursor, citric acid to precursor molar ratio and pH increased from 0.2 to 1, 1 to 3 and 0.5 to 3, respectively. Citric acid to precursor molar ratio, concentration of the precursor and the pH had the most significant effect on the synthesis of the FTO nano-powders, respectively. |
---|---|
ISSN: | 0250-4707 0973-7669 |
DOI: | 10.1007/s12034-019-1769-5 |