The quaternionic Maass Spezialschar on split \(\mathrm{SO}(8)\)

The classical Maass Spezialschar is a Hecke-stable subspace of the level one holomorphic Siegel modular forms of genus two, i.e., on \(\mathrm{Sp}_4\), cut out by certain linear relations between the Fourier coefficients. It is a theorem of Andrianov, Maass, and Zagier, that the classical Maass Spez...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-01
Hauptverfasser: Johnson-Leung, Jennifer, McGlade, Finn, Negrini, Isabella, Pollack, Aaron, Roy, Manami
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The classical Maass Spezialschar is a Hecke-stable subspace of the level one holomorphic Siegel modular forms of genus two, i.e., on \(\mathrm{Sp}_4\), cut out by certain linear relations between the Fourier coefficients. It is a theorem of Andrianov, Maass, and Zagier, that the classical Maass Spezialschar is exactly equal to the space of Saito-Kurokawa lifts. We study an analogous space of quaternionic modular forms on split \(\mathrm{SO}_8\), and prove the analogue of the Andrianov-Maass-Zagier theorem. Our main tool for proving this theorem is the development of a theory of a Fourier-Jacobi expansion of quaternionic modular forms on orthogonal groups.
ISSN:2331-8422