Modification of pre-existing folds in a shear zone: A case study from Kumbhalgarh–Ranakpur area, South Delhi Fold Belt, Rajasthan, India
Pre-existing structures (e.g., folds, foliations, lineations) are usually rotated and modified within a shear zone, depending on their attitude with respect to the kinematic framework (i.e., orientation of instantaneous stretching axes (ISA), kinematical vorticity number of the flow ( W k )) of the...
Gespeichert in:
Veröffentlicht in: | Journal of Earth System Science 2020-12, Vol.129 (1), p.126, Article 126 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pre-existing structures (e.g., folds, foliations, lineations) are usually rotated and modified within a shear zone, depending on their attitude with respect to the kinematic framework (i.e., orientation of instantaneous stretching axes (ISA), kinematical vorticity number of the flow (
W
k
)) of the shear zone. In addition, new folds may also form within a shear zone, and it is not always easy to distinguish between the pre- and syn-shearing structures in the field, especially if they form on the same rock type. The present contribution describes the reorientation and shape modification (tightening) of pre-existing and syn-shearing folds in metamorphosed calcareous rocks of the Kumbhalgarh Group (part of Delhi Supergroup) due to shearing along the Ranakpur Shear Zone (RSZ), in Kumbhalgarh–Sayra–Ranakpur area of South Delhi Fold Belt (SDFB), also called South Delhi Terrane (SDT). From field-based study and measurements, it is shown that the shallow-plunging, upright second generation (DF
2
) folds of SDFB/SDT have been rotated to subvertical, tight folds within the RSZ. Fold shape analysis using layer thickness and limb dip of folds (i.e., Ramsay’s classification) and by Fourier transform shape analyses of fold profile sections corroborates and roughly quantifies the tightening and shape modification of pre-existing folds within the RSZ. In contrast, syn-shearing folds have formed on the foliations in calc-silicate rocks which show strongly non-cylindrical geometry with apical deflection in an oblique direction. From the available shear sense indicators like rotated porphyroclast tails and vergence of asymmetric folds, the shear sense of the RSZ is interpreted as oblique reverse (east-side-up) with subordinate sinistral (east-towards-north) shear component, which is similar to the shear sense interpreted by some earlier workers. |
---|---|
ISSN: | 2347-4327 0253-4126 0973-774X |
DOI: | 10.1007/s12040-020-01395-z |