Stochastically Complete, Parabolic and L1-Liouville Spacelike Submanifolds with Parallel Mean Curvature Vector
We deal with n -dimensional spacelike submanifolds immersed with parallel mean curvature vector h in a pseudo-Riemannian space form L q n + p ( c ) of index 1 ≤ q ≤ p and constant sectional curvature c ∈{− 1,0,1}. Considering the cases when h is either spacelike or timelike, we are able to prove tha...
Gespeichert in:
Veröffentlicht in: | Potential analysis 2024, Vol.60 (1), p.27-43 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We deal with
n
-dimensional spacelike submanifolds immersed with parallel mean curvature vector
h
in a pseudo-Riemannian space form
L
q
n
+
p
(
c
)
of index 1 ≤
q
≤
p
and constant sectional curvature
c
∈{− 1,0,1}. Considering the cases when
h
is either spacelike or timelike, we are able to prove that such a spacelike submanifold is either totally umbilical or it holds a lower estimate for the supremum of the norm of its traceless second fundamental form, occurring equality if the spacelike submanifold is pseudo-umbilical and its principal curvatures are constant. In our approach, we use three main core concepts: Stochastic completeness, parabolicity and
L
1
-Liouville property. |
---|---|
ISSN: | 0926-2601 1572-929X |
DOI: | 10.1007/s11118-022-10043-8 |