Stochastically Complete, Parabolic and L1-Liouville Spacelike Submanifolds with Parallel Mean Curvature Vector

We deal with n -dimensional spacelike submanifolds immersed with parallel mean curvature vector h in a pseudo-Riemannian space form L q n + p ( c ) of index 1 ≤ q ≤ p and constant sectional curvature c ∈{− 1,0,1}. Considering the cases when h is either spacelike or timelike, we are able to prove tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Potential analysis 2024, Vol.60 (1), p.27-43
Hauptverfasser: Barboza, Weiller F. C., de Lima, Henrique F., Velásquez, Marco Antonio L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We deal with n -dimensional spacelike submanifolds immersed with parallel mean curvature vector h in a pseudo-Riemannian space form L q n + p ( c ) of index 1 ≤ q ≤ p and constant sectional curvature c ∈{− 1,0,1}. Considering the cases when h is either spacelike or timelike, we are able to prove that such a spacelike submanifold is either totally umbilical or it holds a lower estimate for the supremum of the norm of its traceless second fundamental form, occurring equality if the spacelike submanifold is pseudo-umbilical and its principal curvatures are constant. In our approach, we use three main core concepts: Stochastic completeness, parabolicity and L 1 -Liouville property.
ISSN:0926-2601
1572-929X
DOI:10.1007/s11118-022-10043-8