On Gegenbauer Point Processes on the Unit Interval

In this paper we compute the logarithmic energy of points in the unit interval [-1,1] chosen from different Gegenbauer Determinantal Point Processes. We check that all the different families of Gegenbauer polynomials yield the same asymptotic result to third order, we compute exactly the value for C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Potential analysis 2024, Vol.60 (1), p.139-172
Hauptverfasser: Beltrán, Carlos, Delgado, Antonia, Fernández, Lidia, Sánchez-Lara, Joaquín
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 172
container_issue 1
container_start_page 139
container_title Potential analysis
container_volume 60
creator Beltrán, Carlos
Delgado, Antonia
Fernández, Lidia
Sánchez-Lara, Joaquín
description In this paper we compute the logarithmic energy of points in the unit interval [-1,1] chosen from different Gegenbauer Determinantal Point Processes. We check that all the different families of Gegenbauer polynomials yield the same asymptotic result to third order, we compute exactly the value for Chebyshev polynomials and we give a closed expression for the minimal possible logarithmic energy. The comparison suggests that DPPs cannot match the value of the minimum beyond the third asymptotic term.
doi_str_mv 10.1007/s11118-022-10045-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919806819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919806819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-5dede7e6dfb32db2bbab862822dd5da84df0198e500b1ebf031ecc23e9ca75713</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4GnBc3Qy2002RylaC4X2YMFbSDaztaVma7IVfHujK3hzLsPA__0DH2PXAm4FgLpLIk_NAZHne1JxecJGolLINeqXUzYCjZKjBHHOLlLaAQAqVY8YLkMxow0FZ48Ui1W3DX2xil1DKVEqulD0r1Ssw7Yv5qGn-GH3l-ystftEV797zNaPD8_TJ75YzubT-wVvSln2vPLkSZH0rSvRO3TOulpijeh95W098S0IXVMF4AS5FkpBTYMl6caqSolyzG6G3kPs3o-UerPrjjHklwZ1JkHWQucUDqkmdilFas0hbt9s_DQCzLcbM7gx2Y35cWNkhsoBSjkcNhT_qv-hvgBQsmZz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919806819</pqid></control><display><type>article</type><title>On Gegenbauer Point Processes on the Unit Interval</title><source>SpringerLink Journals - AutoHoldings</source><creator>Beltrán, Carlos ; Delgado, Antonia ; Fernández, Lidia ; Sánchez-Lara, Joaquín</creator><creatorcontrib>Beltrán, Carlos ; Delgado, Antonia ; Fernández, Lidia ; Sánchez-Lara, Joaquín</creatorcontrib><description>In this paper we compute the logarithmic energy of points in the unit interval [-1,1] chosen from different Gegenbauer Determinantal Point Processes. We check that all the different families of Gegenbauer polynomials yield the same asymptotic result to third order, we compute exactly the value for Chebyshev polynomials and we give a closed expression for the minimal possible logarithmic energy. The comparison suggests that DPPs cannot match the value of the minimum beyond the third asymptotic term.</description><identifier>ISSN: 0926-2601</identifier><identifier>EISSN: 1572-929X</identifier><identifier>DOI: 10.1007/s11118-022-10045-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Asymptotic properties ; Chebyshev approximation ; Functional Analysis ; Geometry ; Logarithms ; Mathematics ; Mathematics and Statistics ; Polynomials ; Potential Theory ; Probability Theory and Stochastic Processes</subject><ispartof>Potential analysis, 2024, Vol.60 (1), p.139-172</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-5dede7e6dfb32db2bbab862822dd5da84df0198e500b1ebf031ecc23e9ca75713</citedby><cites>FETCH-LOGICAL-c363t-5dede7e6dfb32db2bbab862822dd5da84df0198e500b1ebf031ecc23e9ca75713</cites><orcidid>0000-0003-1547-6653 ; 0000-0001-7418-3231 ; 0000-0002-0689-8232 ; 0000-0003-1969-9643</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11118-022-10045-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11118-022-10045-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Beltrán, Carlos</creatorcontrib><creatorcontrib>Delgado, Antonia</creatorcontrib><creatorcontrib>Fernández, Lidia</creatorcontrib><creatorcontrib>Sánchez-Lara, Joaquín</creatorcontrib><title>On Gegenbauer Point Processes on the Unit Interval</title><title>Potential analysis</title><addtitle>Potential Anal</addtitle><description>In this paper we compute the logarithmic energy of points in the unit interval [-1,1] chosen from different Gegenbauer Determinantal Point Processes. We check that all the different families of Gegenbauer polynomials yield the same asymptotic result to third order, we compute exactly the value for Chebyshev polynomials and we give a closed expression for the minimal possible logarithmic energy. The comparison suggests that DPPs cannot match the value of the minimum beyond the third asymptotic term.</description><subject>Asymptotic properties</subject><subject>Chebyshev approximation</subject><subject>Functional Analysis</subject><subject>Geometry</subject><subject>Logarithms</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><subject>Potential Theory</subject><subject>Probability Theory and Stochastic Processes</subject><issn>0926-2601</issn><issn>1572-929X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMFKAzEQhoMoWKsv4GnBc3Qy2002RylaC4X2YMFbSDaztaVma7IVfHujK3hzLsPA__0DH2PXAm4FgLpLIk_NAZHne1JxecJGolLINeqXUzYCjZKjBHHOLlLaAQAqVY8YLkMxow0FZ48Ui1W3DX2xil1DKVEqulD0r1Ssw7Yv5qGn-GH3l-ystftEV797zNaPD8_TJ75YzubT-wVvSln2vPLkSZH0rSvRO3TOulpijeh95W098S0IXVMF4AS5FkpBTYMl6caqSolyzG6G3kPs3o-UerPrjjHklwZ1JkHWQucUDqkmdilFas0hbt9s_DQCzLcbM7gx2Y35cWNkhsoBSjkcNhT_qv-hvgBQsmZz</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Beltrán, Carlos</creator><creator>Delgado, Antonia</creator><creator>Fernández, Lidia</creator><creator>Sánchez-Lara, Joaquín</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1547-6653</orcidid><orcidid>https://orcid.org/0000-0001-7418-3231</orcidid><orcidid>https://orcid.org/0000-0002-0689-8232</orcidid><orcidid>https://orcid.org/0000-0003-1969-9643</orcidid></search><sort><creationdate>2024</creationdate><title>On Gegenbauer Point Processes on the Unit Interval</title><author>Beltrán, Carlos ; Delgado, Antonia ; Fernández, Lidia ; Sánchez-Lara, Joaquín</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-5dede7e6dfb32db2bbab862822dd5da84df0198e500b1ebf031ecc23e9ca75713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotic properties</topic><topic>Chebyshev approximation</topic><topic>Functional Analysis</topic><topic>Geometry</topic><topic>Logarithms</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><topic>Potential Theory</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beltrán, Carlos</creatorcontrib><creatorcontrib>Delgado, Antonia</creatorcontrib><creatorcontrib>Fernández, Lidia</creatorcontrib><creatorcontrib>Sánchez-Lara, Joaquín</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Potential analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beltrán, Carlos</au><au>Delgado, Antonia</au><au>Fernández, Lidia</au><au>Sánchez-Lara, Joaquín</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Gegenbauer Point Processes on the Unit Interval</atitle><jtitle>Potential analysis</jtitle><stitle>Potential Anal</stitle><date>2024</date><risdate>2024</risdate><volume>60</volume><issue>1</issue><spage>139</spage><epage>172</epage><pages>139-172</pages><issn>0926-2601</issn><eissn>1572-929X</eissn><abstract>In this paper we compute the logarithmic energy of points in the unit interval [-1,1] chosen from different Gegenbauer Determinantal Point Processes. We check that all the different families of Gegenbauer polynomials yield the same asymptotic result to third order, we compute exactly the value for Chebyshev polynomials and we give a closed expression for the minimal possible logarithmic energy. The comparison suggests that DPPs cannot match the value of the minimum beyond the third asymptotic term.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11118-022-10045-6</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0003-1547-6653</orcidid><orcidid>https://orcid.org/0000-0001-7418-3231</orcidid><orcidid>https://orcid.org/0000-0002-0689-8232</orcidid><orcidid>https://orcid.org/0000-0003-1969-9643</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0926-2601
ispartof Potential analysis, 2024, Vol.60 (1), p.139-172
issn 0926-2601
1572-929X
language eng
recordid cdi_proquest_journals_2919806819
source SpringerLink Journals - AutoHoldings
subjects Asymptotic properties
Chebyshev approximation
Functional Analysis
Geometry
Logarithms
Mathematics
Mathematics and Statistics
Polynomials
Potential Theory
Probability Theory and Stochastic Processes
title On Gegenbauer Point Processes on the Unit Interval
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T09%3A20%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Gegenbauer%20Point%20Processes%20on%20the%20Unit%20Interval&rft.jtitle=Potential%20analysis&rft.au=Beltr%C3%A1n,%20Carlos&rft.date=2024&rft.volume=60&rft.issue=1&rft.spage=139&rft.epage=172&rft.pages=139-172&rft.issn=0926-2601&rft.eissn=1572-929X&rft_id=info:doi/10.1007/s11118-022-10045-6&rft_dat=%3Cproquest_cross%3E2919806819%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919806819&rft_id=info:pmid/&rfr_iscdi=true