On Gegenbauer Point Processes on the Unit Interval
In this paper we compute the logarithmic energy of points in the unit interval [-1,1] chosen from different Gegenbauer Determinantal Point Processes. We check that all the different families of Gegenbauer polynomials yield the same asymptotic result to third order, we compute exactly the value for C...
Gespeichert in:
Veröffentlicht in: | Potential analysis 2024, Vol.60 (1), p.139-172 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 172 |
---|---|
container_issue | 1 |
container_start_page | 139 |
container_title | Potential analysis |
container_volume | 60 |
creator | Beltrán, Carlos Delgado, Antonia Fernández, Lidia Sánchez-Lara, Joaquín |
description | In this paper we compute the logarithmic energy of points in the unit interval [-1,1] chosen from different Gegenbauer Determinantal Point Processes. We check that all the different families of Gegenbauer polynomials yield the same asymptotic result to third order, we compute exactly the value for Chebyshev polynomials and we give a closed expression for the minimal possible logarithmic energy. The comparison suggests that DPPs cannot match the value of the minimum beyond the third asymptotic term. |
doi_str_mv | 10.1007/s11118-022-10045-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919806819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919806819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-5dede7e6dfb32db2bbab862822dd5da84df0198e500b1ebf031ecc23e9ca75713</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4GnBc3Qy2002RylaC4X2YMFbSDaztaVma7IVfHujK3hzLsPA__0DH2PXAm4FgLpLIk_NAZHne1JxecJGolLINeqXUzYCjZKjBHHOLlLaAQAqVY8YLkMxow0FZ48Ui1W3DX2xil1DKVEqulD0r1Ssw7Yv5qGn-GH3l-ystftEV797zNaPD8_TJ75YzubT-wVvSln2vPLkSZH0rSvRO3TOulpijeh95W098S0IXVMF4AS5FkpBTYMl6caqSolyzG6G3kPs3o-UerPrjjHklwZ1JkHWQucUDqkmdilFas0hbt9s_DQCzLcbM7gx2Y35cWNkhsoBSjkcNhT_qv-hvgBQsmZz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919806819</pqid></control><display><type>article</type><title>On Gegenbauer Point Processes on the Unit Interval</title><source>SpringerLink Journals - AutoHoldings</source><creator>Beltrán, Carlos ; Delgado, Antonia ; Fernández, Lidia ; Sánchez-Lara, Joaquín</creator><creatorcontrib>Beltrán, Carlos ; Delgado, Antonia ; Fernández, Lidia ; Sánchez-Lara, Joaquín</creatorcontrib><description>In this paper we compute the logarithmic energy of points in the unit interval [-1,1] chosen from different Gegenbauer Determinantal Point Processes. We check that all the different families of Gegenbauer polynomials yield the same asymptotic result to third order, we compute exactly the value for Chebyshev polynomials and we give a closed expression for the minimal possible logarithmic energy. The comparison suggests that DPPs cannot match the value of the minimum beyond the third asymptotic term.</description><identifier>ISSN: 0926-2601</identifier><identifier>EISSN: 1572-929X</identifier><identifier>DOI: 10.1007/s11118-022-10045-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Asymptotic properties ; Chebyshev approximation ; Functional Analysis ; Geometry ; Logarithms ; Mathematics ; Mathematics and Statistics ; Polynomials ; Potential Theory ; Probability Theory and Stochastic Processes</subject><ispartof>Potential analysis, 2024, Vol.60 (1), p.139-172</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-5dede7e6dfb32db2bbab862822dd5da84df0198e500b1ebf031ecc23e9ca75713</citedby><cites>FETCH-LOGICAL-c363t-5dede7e6dfb32db2bbab862822dd5da84df0198e500b1ebf031ecc23e9ca75713</cites><orcidid>0000-0003-1547-6653 ; 0000-0001-7418-3231 ; 0000-0002-0689-8232 ; 0000-0003-1969-9643</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11118-022-10045-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11118-022-10045-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Beltrán, Carlos</creatorcontrib><creatorcontrib>Delgado, Antonia</creatorcontrib><creatorcontrib>Fernández, Lidia</creatorcontrib><creatorcontrib>Sánchez-Lara, Joaquín</creatorcontrib><title>On Gegenbauer Point Processes on the Unit Interval</title><title>Potential analysis</title><addtitle>Potential Anal</addtitle><description>In this paper we compute the logarithmic energy of points in the unit interval [-1,1] chosen from different Gegenbauer Determinantal Point Processes. We check that all the different families of Gegenbauer polynomials yield the same asymptotic result to third order, we compute exactly the value for Chebyshev polynomials and we give a closed expression for the minimal possible logarithmic energy. The comparison suggests that DPPs cannot match the value of the minimum beyond the third asymptotic term.</description><subject>Asymptotic properties</subject><subject>Chebyshev approximation</subject><subject>Functional Analysis</subject><subject>Geometry</subject><subject>Logarithms</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><subject>Potential Theory</subject><subject>Probability Theory and Stochastic Processes</subject><issn>0926-2601</issn><issn>1572-929X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMFKAzEQhoMoWKsv4GnBc3Qy2002RylaC4X2YMFbSDaztaVma7IVfHujK3hzLsPA__0DH2PXAm4FgLpLIk_NAZHne1JxecJGolLINeqXUzYCjZKjBHHOLlLaAQAqVY8YLkMxow0FZ48Ui1W3DX2xil1DKVEqulD0r1Ssw7Yv5qGn-GH3l-ystftEV797zNaPD8_TJ75YzubT-wVvSln2vPLkSZH0rSvRO3TOulpijeh95W098S0IXVMF4AS5FkpBTYMl6caqSolyzG6G3kPs3o-UerPrjjHklwZ1JkHWQucUDqkmdilFas0hbt9s_DQCzLcbM7gx2Y35cWNkhsoBSjkcNhT_qv-hvgBQsmZz</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Beltrán, Carlos</creator><creator>Delgado, Antonia</creator><creator>Fernández, Lidia</creator><creator>Sánchez-Lara, Joaquín</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1547-6653</orcidid><orcidid>https://orcid.org/0000-0001-7418-3231</orcidid><orcidid>https://orcid.org/0000-0002-0689-8232</orcidid><orcidid>https://orcid.org/0000-0003-1969-9643</orcidid></search><sort><creationdate>2024</creationdate><title>On Gegenbauer Point Processes on the Unit Interval</title><author>Beltrán, Carlos ; Delgado, Antonia ; Fernández, Lidia ; Sánchez-Lara, Joaquín</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-5dede7e6dfb32db2bbab862822dd5da84df0198e500b1ebf031ecc23e9ca75713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotic properties</topic><topic>Chebyshev approximation</topic><topic>Functional Analysis</topic><topic>Geometry</topic><topic>Logarithms</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><topic>Potential Theory</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beltrán, Carlos</creatorcontrib><creatorcontrib>Delgado, Antonia</creatorcontrib><creatorcontrib>Fernández, Lidia</creatorcontrib><creatorcontrib>Sánchez-Lara, Joaquín</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Potential analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beltrán, Carlos</au><au>Delgado, Antonia</au><au>Fernández, Lidia</au><au>Sánchez-Lara, Joaquín</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Gegenbauer Point Processes on the Unit Interval</atitle><jtitle>Potential analysis</jtitle><stitle>Potential Anal</stitle><date>2024</date><risdate>2024</risdate><volume>60</volume><issue>1</issue><spage>139</spage><epage>172</epage><pages>139-172</pages><issn>0926-2601</issn><eissn>1572-929X</eissn><abstract>In this paper we compute the logarithmic energy of points in the unit interval [-1,1] chosen from different Gegenbauer Determinantal Point Processes. We check that all the different families of Gegenbauer polynomials yield the same asymptotic result to third order, we compute exactly the value for Chebyshev polynomials and we give a closed expression for the minimal possible logarithmic energy. The comparison suggests that DPPs cannot match the value of the minimum beyond the third asymptotic term.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11118-022-10045-6</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0003-1547-6653</orcidid><orcidid>https://orcid.org/0000-0001-7418-3231</orcidid><orcidid>https://orcid.org/0000-0002-0689-8232</orcidid><orcidid>https://orcid.org/0000-0003-1969-9643</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-2601 |
ispartof | Potential analysis, 2024, Vol.60 (1), p.139-172 |
issn | 0926-2601 1572-929X |
language | eng |
recordid | cdi_proquest_journals_2919806819 |
source | SpringerLink Journals - AutoHoldings |
subjects | Asymptotic properties Chebyshev approximation Functional Analysis Geometry Logarithms Mathematics Mathematics and Statistics Polynomials Potential Theory Probability Theory and Stochastic Processes |
title | On Gegenbauer Point Processes on the Unit Interval |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T09%3A20%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Gegenbauer%20Point%20Processes%20on%20the%20Unit%20Interval&rft.jtitle=Potential%20analysis&rft.au=Beltr%C3%A1n,%20Carlos&rft.date=2024&rft.volume=60&rft.issue=1&rft.spage=139&rft.epage=172&rft.pages=139-172&rft.issn=0926-2601&rft.eissn=1572-929X&rft_id=info:doi/10.1007/s11118-022-10045-6&rft_dat=%3Cproquest_cross%3E2919806819%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919806819&rft_id=info:pmid/&rfr_iscdi=true |