On Gegenbauer Point Processes on the Unit Interval

In this paper we compute the logarithmic energy of points in the unit interval [-1,1] chosen from different Gegenbauer Determinantal Point Processes. We check that all the different families of Gegenbauer polynomials yield the same asymptotic result to third order, we compute exactly the value for C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Potential analysis 2024, Vol.60 (1), p.139-172
Hauptverfasser: Beltrán, Carlos, Delgado, Antonia, Fernández, Lidia, Sánchez-Lara, Joaquín
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we compute the logarithmic energy of points in the unit interval [-1,1] chosen from different Gegenbauer Determinantal Point Processes. We check that all the different families of Gegenbauer polynomials yield the same asymptotic result to third order, we compute exactly the value for Chebyshev polynomials and we give a closed expression for the minimal possible logarithmic energy. The comparison suggests that DPPs cannot match the value of the minimum beyond the third asymptotic term.
ISSN:0926-2601
1572-929X
DOI:10.1007/s11118-022-10045-6