On symmetries of spheres in univalent foundations

Working in univalent foundations, we investigate the symmetries of spheres, i.e., the types of the form \(\mathbb{S}^n = \mathbb{S}^n\). The case of the circle has a slick answer: the symmetries of the circle form two copies of the circle. For higher-dimensional spheres, the type of symmetries has a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-01
Hauptverfasser: Cagne, Pierre, Buchholtz, Ulrik, Kraus, Nicolai, Bezem, Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Cagne, Pierre
Buchholtz, Ulrik
Kraus, Nicolai
Bezem, Marc
description Working in univalent foundations, we investigate the symmetries of spheres, i.e., the types of the form \(\mathbb{S}^n = \mathbb{S}^n\). The case of the circle has a slick answer: the symmetries of the circle form two copies of the circle. For higher-dimensional spheres, the type of symmetries has again two connected components, namely the components of the maps of degree plus or minus one. Each of the two components has \(\mathbb{Z}/2\mathbb{Z}\) as fundamental group. For the latter result, we develop an EHP long exact sequence.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2919774381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919774381</sourcerecordid><originalsourceid>FETCH-proquest_journals_29197743813</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9M9TKK7MzU0tKcpMLVbIT1MoLshILQIyM_MUSvMyyxJzUvNKFNLyS_NSEksy8_OKeRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3sjS0NLc3MTYwtCYOFUA3CE0EQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919774381</pqid></control><display><type>article</type><title>On symmetries of spheres in univalent foundations</title><source>Free E- Journals</source><creator>Cagne, Pierre ; Buchholtz, Ulrik ; Kraus, Nicolai ; Bezem, Marc</creator><creatorcontrib>Cagne, Pierre ; Buchholtz, Ulrik ; Kraus, Nicolai ; Bezem, Marc</creatorcontrib><description>Working in univalent foundations, we investigate the symmetries of spheres, i.e., the types of the form \(\mathbb{S}^n = \mathbb{S}^n\). The case of the circle has a slick answer: the symmetries of the circle form two copies of the circle. For higher-dimensional spheres, the type of symmetries has again two connected components, namely the components of the maps of degree plus or minus one. Each of the two components has \(\mathbb{Z}/2\mathbb{Z}\) as fundamental group. For the latter result, we develop an EHP long exact sequence.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Foundations</subject><ispartof>arXiv.org, 2024-01</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Cagne, Pierre</creatorcontrib><creatorcontrib>Buchholtz, Ulrik</creatorcontrib><creatorcontrib>Kraus, Nicolai</creatorcontrib><creatorcontrib>Bezem, Marc</creatorcontrib><title>On symmetries of spheres in univalent foundations</title><title>arXiv.org</title><description>Working in univalent foundations, we investigate the symmetries of spheres, i.e., the types of the form \(\mathbb{S}^n = \mathbb{S}^n\). The case of the circle has a slick answer: the symmetries of the circle form two copies of the circle. For higher-dimensional spheres, the type of symmetries has again two connected components, namely the components of the maps of degree plus or minus one. Each of the two components has \(\mathbb{Z}/2\mathbb{Z}\) as fundamental group. For the latter result, we develop an EHP long exact sequence.</description><subject>Foundations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9M9TKK7MzU0tKcpMLVbIT1MoLshILQIyM_MUSvMyyxJzUvNKFNLyS_NSEksy8_OKeRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3sjS0NLc3MTYwtCYOFUA3CE0EQ</recordid><startdate>20240126</startdate><enddate>20240126</enddate><creator>Cagne, Pierre</creator><creator>Buchholtz, Ulrik</creator><creator>Kraus, Nicolai</creator><creator>Bezem, Marc</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240126</creationdate><title>On symmetries of spheres in univalent foundations</title><author>Cagne, Pierre ; Buchholtz, Ulrik ; Kraus, Nicolai ; Bezem, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29197743813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Foundations</topic><toplevel>online_resources</toplevel><creatorcontrib>Cagne, Pierre</creatorcontrib><creatorcontrib>Buchholtz, Ulrik</creatorcontrib><creatorcontrib>Kraus, Nicolai</creatorcontrib><creatorcontrib>Bezem, Marc</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cagne, Pierre</au><au>Buchholtz, Ulrik</au><au>Kraus, Nicolai</au><au>Bezem, Marc</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On symmetries of spheres in univalent foundations</atitle><jtitle>arXiv.org</jtitle><date>2024-01-26</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Working in univalent foundations, we investigate the symmetries of spheres, i.e., the types of the form \(\mathbb{S}^n = \mathbb{S}^n\). The case of the circle has a slick answer: the symmetries of the circle form two copies of the circle. For higher-dimensional spheres, the type of symmetries has again two connected components, namely the components of the maps of degree plus or minus one. Each of the two components has \(\mathbb{Z}/2\mathbb{Z}\) as fundamental group. For the latter result, we develop an EHP long exact sequence.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2919774381
source Free E- Journals
subjects Foundations
title On symmetries of spheres in univalent foundations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A44%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20symmetries%20of%20spheres%20in%20univalent%20foundations&rft.jtitle=arXiv.org&rft.au=Cagne,%20Pierre&rft.date=2024-01-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2919774381%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919774381&rft_id=info:pmid/&rfr_iscdi=true