On symmetries of spheres in univalent foundations
Working in univalent foundations, we investigate the symmetries of spheres, i.e., the types of the form \(\mathbb{S}^n = \mathbb{S}^n\). The case of the circle has a slick answer: the symmetries of the circle form two copies of the circle. For higher-dimensional spheres, the type of symmetries has a...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-01 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Working in univalent foundations, we investigate the symmetries of spheres, i.e., the types of the form \(\mathbb{S}^n = \mathbb{S}^n\). The case of the circle has a slick answer: the symmetries of the circle form two copies of the circle. For higher-dimensional spheres, the type of symmetries has again two connected components, namely the components of the maps of degree plus or minus one. Each of the two components has \(\mathbb{Z}/2\mathbb{Z}\) as fundamental group. For the latter result, we develop an EHP long exact sequence. |
---|---|
ISSN: | 2331-8422 |