On symmetries of spheres in univalent foundations

Working in univalent foundations, we investigate the symmetries of spheres, i.e., the types of the form \(\mathbb{S}^n = \mathbb{S}^n\). The case of the circle has a slick answer: the symmetries of the circle form two copies of the circle. For higher-dimensional spheres, the type of symmetries has a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-01
Hauptverfasser: Cagne, Pierre, Buchholtz, Ulrik, Kraus, Nicolai, Bezem, Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Working in univalent foundations, we investigate the symmetries of spheres, i.e., the types of the form \(\mathbb{S}^n = \mathbb{S}^n\). The case of the circle has a slick answer: the symmetries of the circle form two copies of the circle. For higher-dimensional spheres, the type of symmetries has again two connected components, namely the components of the maps of degree plus or minus one. Each of the two components has \(\mathbb{Z}/2\mathbb{Z}\) as fundamental group. For the latter result, we develop an EHP long exact sequence.
ISSN:2331-8422