Effective Z evaluation using monoenergetic gamma rays and neural networks
Two analysis methods for Z eff evaluation were explored using both experimental and simulated gamma-ray attenuation data. Using particle-capture reactions on composite targets to generate multi-monoenergetic gamma rays between 1 and 12 MeV, we demonstrate the advantage of using neural networks for e...
Gespeichert in:
Veröffentlicht in: | European physical journal plus 2020-02, Vol.135 (2), p.140, Article 140 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two analysis methods for
Z
eff
evaluation were explored using both experimental and simulated gamma-ray attenuation data. Using particle-capture reactions on composite targets to generate multi-monoenergetic gamma rays between 1 and 12 MeV, we demonstrate the advantage of using neural networks for effective
Z
evaluation of shielded materials in single-pixel measurements. Furthermore, we extend the analysis to 2D processing of transmission radiography and by using Geant4-simulated data we prove the superiority of artificial neural networks in terms of image quality and material discrimination against classical methods. |
---|---|
ISSN: | 2190-5444 2190-5444 |
DOI: | 10.1140/epjp/s13360-020-00122-3 |