Effective Z evaluation using monoenergetic gamma rays and neural networks

Two analysis methods for Z eff evaluation were explored using both experimental and simulated gamma-ray attenuation data. Using particle-capture reactions on composite targets to generate multi-monoenergetic gamma rays between 1 and 12 MeV, we demonstrate the advantage of using neural networks for e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus 2020-02, Vol.135 (2), p.140, Article 140
Hauptverfasser: Turturica, G. V., Iancu, V., Pappalardo, A., Söderström, P.-A., Açıksöz, E., Balabanski, D. L., Capponi, L., Constantin, P., Fugaru, V., Guardo, G. L., Ilie, M., Ilie, S., Iovea, M., Lattuada, D., Nichita, D., Petruse, T., Spataru, A., Ur, C. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two analysis methods for Z eff evaluation were explored using both experimental and simulated gamma-ray attenuation data. Using particle-capture reactions on composite targets to generate multi-monoenergetic gamma rays between 1 and 12 MeV, we demonstrate the advantage of using neural networks for effective Z evaluation of shielded materials in single-pixel measurements. Furthermore, we extend the analysis to 2D processing of transmission radiography and by using Geant4-simulated data we prove the superiority of artificial neural networks in terms of image quality and material discrimination against classical methods.
ISSN:2190-5444
2190-5444
DOI:10.1140/epjp/s13360-020-00122-3