Characteristics of moving hot block and non-Fourier heat flux model on sinusoidal wavy cavity filled with hybrid nanofluid

This paper examines the natural convection in a sinusoidal wavy cavity filled with TiO 2 –Cu/water hybrid nanofluid under the effect of internal heat generation, inclined magnetic field and thermal radiation. The non-Fourier heat flux model is utilized for the formulation of the temperature equation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus 2022-01, Vol.137 (1), p.131, Article 131
Hauptverfasser: Shaik, Jakeer, Polu, Bala Anki Reddy, Mohamed Ahmed, Mansour, Ahmed Mohamed, Rashad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 131
container_title European physical journal plus
container_volume 137
creator Shaik, Jakeer
Polu, Bala Anki Reddy
Mohamed Ahmed, Mansour
Ahmed Mohamed, Rashad
description This paper examines the natural convection in a sinusoidal wavy cavity filled with TiO 2 –Cu/water hybrid nanofluid under the effect of internal heat generation, inclined magnetic field and thermal radiation. The non-Fourier heat flux model is utilized for the formulation of the temperature equation. This type of wavy cavity investigation is suitable in the cooling systems of microelectronic devices, wall bricks, underground cable systems and mass and heat transfers occurring in chemical reactors. The dimensionless forms of governing equations and boundary conditions are transformed numerically using the finite volume approach via the SIMPLER algorithm simultaneously with MATLAB solver. The gained outcomes are portrayed graphically via streamlines, isotherms, local and average Nusselt numbers. The heat transfer rate and fluid flow in view of internal heated and wavy walls play a significant role. The higher values of heat generation parameter increase the rate of heat transfer and decrease the local Nusselt numbers. Improving the undulation parameter increases the complexity of the flow domain and reduces convective transport as a result. When compared to TiO 2 nanoparticle, Cu nanoparticles generate a high heat transfer rate in Ha. The internal heat generation parameter is increased from − 2 to 2, it grouped the streamlines closer toward the heated wall and to the top of the cold wall.
doi_str_mv 10.1140/epjp/s13360-022-02361-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919735956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919735956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-3c73b982cac8eaac0561246f653e62fd446a03cf67606583ac6ec91e76212e73</originalsourceid><addsrcrecordid>eNqFkE9LwzAYh4soOOY-gwHPdfnXtDnKcCoMvOwesjRZM7tkJu1m_fRmVtCbgZe8h9_zC3my7BbBe4QonOvD7jCPiBAGc4hxGsJQPlxkE4w4zAtK6eWf_TqbxbiD6VCOKKeT7HPRyCBVp4ONnVUReAP2_mjdFjS-A5vWqzcgXQ2cd_nS98HqABotO2Da_iNFa90C70C0ro_e1rIFJ3kcgJJH2w3A2LbVNTjZrgHNsAk2FUnnE2vrm-zKyDbq2c89zdbLx_XiOV-9Pr0sHla5wox2OVEl2fAKK6kqLaWCBUOYMsMKohk2NaVMQqIMKxlkRUWkYlpxpEuGEdYlmWZ3Y-0h-Pdex07s0jdcelFgjnhJCl6wlCrHlAo-xqCNOAS7l2EQCIqzanFWLUbVIqkW36rFkMhqJGMi3FaH3_7_0C9h-Iep</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919735956</pqid></control><display><type>article</type><title>Characteristics of moving hot block and non-Fourier heat flux model on sinusoidal wavy cavity filled with hybrid nanofluid</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Shaik, Jakeer ; Polu, Bala Anki Reddy ; Mohamed Ahmed, Mansour ; Ahmed Mohamed, Rashad</creator><creatorcontrib>Shaik, Jakeer ; Polu, Bala Anki Reddy ; Mohamed Ahmed, Mansour ; Ahmed Mohamed, Rashad</creatorcontrib><description>This paper examines the natural convection in a sinusoidal wavy cavity filled with TiO 2 –Cu/water hybrid nanofluid under the effect of internal heat generation, inclined magnetic field and thermal radiation. The non-Fourier heat flux model is utilized for the formulation of the temperature equation. This type of wavy cavity investigation is suitable in the cooling systems of microelectronic devices, wall bricks, underground cable systems and mass and heat transfers occurring in chemical reactors. The dimensionless forms of governing equations and boundary conditions are transformed numerically using the finite volume approach via the SIMPLER algorithm simultaneously with MATLAB solver. The gained outcomes are portrayed graphically via streamlines, isotherms, local and average Nusselt numbers. The heat transfer rate and fluid flow in view of internal heated and wavy walls play a significant role. The higher values of heat generation parameter increase the rate of heat transfer and decrease the local Nusselt numbers. Improving the undulation parameter increases the complexity of the flow domain and reduces convective transport as a result. When compared to TiO 2 nanoparticle, Cu nanoparticles generate a high heat transfer rate in Ha. The internal heat generation parameter is increased from − 2 to 2, it grouped the streamlines closer toward the heated wall and to the top of the cold wall.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-022-02361-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Applied and Technical Physics ; Atomic ; Boundary conditions ; Catalysis ; Chemical reactors ; Complex Systems ; Condensed Matter Physics ; Cooling systems ; Dimensionless numbers ; Entropy ; Finite volume method ; Fluid flow ; Fluids ; Free convection ; Heat flux ; Heat generation ; Heat transfer ; Influence ; Investigations ; Magnetic fields ; Mathematical and Computational Physics ; Mathematical models ; Molecular ; Nanofluids ; Nanoparticles ; Numerical analysis ; Optical and Plasma Physics ; Parameters ; Physics ; Physics and Astronomy ; Radiation ; Regular Article ; Sine waves ; Theoretical ; Thermal radiation ; Titanium dioxide ; Underground cables</subject><ispartof>European physical journal plus, 2022-01, Vol.137 (1), p.131, Article 131</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-3c73b982cac8eaac0561246f653e62fd446a03cf67606583ac6ec91e76212e73</citedby><cites>FETCH-LOGICAL-c264t-3c73b982cac8eaac0561246f653e62fd446a03cf67606583ac6ec91e76212e73</cites><orcidid>0000-0001-5824-1796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-022-02361-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919735956?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Shaik, Jakeer</creatorcontrib><creatorcontrib>Polu, Bala Anki Reddy</creatorcontrib><creatorcontrib>Mohamed Ahmed, Mansour</creatorcontrib><creatorcontrib>Ahmed Mohamed, Rashad</creatorcontrib><title>Characteristics of moving hot block and non-Fourier heat flux model on sinusoidal wavy cavity filled with hybrid nanofluid</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>This paper examines the natural convection in a sinusoidal wavy cavity filled with TiO 2 –Cu/water hybrid nanofluid under the effect of internal heat generation, inclined magnetic field and thermal radiation. The non-Fourier heat flux model is utilized for the formulation of the temperature equation. This type of wavy cavity investigation is suitable in the cooling systems of microelectronic devices, wall bricks, underground cable systems and mass and heat transfers occurring in chemical reactors. The dimensionless forms of governing equations and boundary conditions are transformed numerically using the finite volume approach via the SIMPLER algorithm simultaneously with MATLAB solver. The gained outcomes are portrayed graphically via streamlines, isotherms, local and average Nusselt numbers. The heat transfer rate and fluid flow in view of internal heated and wavy walls play a significant role. The higher values of heat generation parameter increase the rate of heat transfer and decrease the local Nusselt numbers. Improving the undulation parameter increases the complexity of the flow domain and reduces convective transport as a result. When compared to TiO 2 nanoparticle, Cu nanoparticles generate a high heat transfer rate in Ha. The internal heat generation parameter is increased from − 2 to 2, it grouped the streamlines closer toward the heated wall and to the top of the cold wall.</description><subject>Algorithms</subject><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Boundary conditions</subject><subject>Catalysis</subject><subject>Chemical reactors</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Cooling systems</subject><subject>Dimensionless numbers</subject><subject>Entropy</subject><subject>Finite volume method</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Free convection</subject><subject>Heat flux</subject><subject>Heat generation</subject><subject>Heat transfer</subject><subject>Influence</subject><subject>Investigations</subject><subject>Magnetic fields</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Molecular</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Numerical analysis</subject><subject>Optical and Plasma Physics</subject><subject>Parameters</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Radiation</subject><subject>Regular Article</subject><subject>Sine waves</subject><subject>Theoretical</subject><subject>Thermal radiation</subject><subject>Titanium dioxide</subject><subject>Underground cables</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkE9LwzAYh4soOOY-gwHPdfnXtDnKcCoMvOwesjRZM7tkJu1m_fRmVtCbgZe8h9_zC3my7BbBe4QonOvD7jCPiBAGc4hxGsJQPlxkE4w4zAtK6eWf_TqbxbiD6VCOKKeT7HPRyCBVp4ONnVUReAP2_mjdFjS-A5vWqzcgXQ2cd_nS98HqABotO2Da_iNFa90C70C0ro_e1rIFJ3kcgJJH2w3A2LbVNTjZrgHNsAk2FUnnE2vrm-zKyDbq2c89zdbLx_XiOV-9Pr0sHla5wox2OVEl2fAKK6kqLaWCBUOYMsMKohk2NaVMQqIMKxlkRUWkYlpxpEuGEdYlmWZ3Y-0h-Pdex07s0jdcelFgjnhJCl6wlCrHlAo-xqCNOAS7l2EQCIqzanFWLUbVIqkW36rFkMhqJGMi3FaH3_7_0C9h-Iep</recordid><startdate>20220118</startdate><enddate>20220118</enddate><creator>Shaik, Jakeer</creator><creator>Polu, Bala Anki Reddy</creator><creator>Mohamed Ahmed, Mansour</creator><creator>Ahmed Mohamed, Rashad</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-5824-1796</orcidid></search><sort><creationdate>20220118</creationdate><title>Characteristics of moving hot block and non-Fourier heat flux model on sinusoidal wavy cavity filled with hybrid nanofluid</title><author>Shaik, Jakeer ; Polu, Bala Anki Reddy ; Mohamed Ahmed, Mansour ; Ahmed Mohamed, Rashad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-3c73b982cac8eaac0561246f653e62fd446a03cf67606583ac6ec91e76212e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Boundary conditions</topic><topic>Catalysis</topic><topic>Chemical reactors</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Cooling systems</topic><topic>Dimensionless numbers</topic><topic>Entropy</topic><topic>Finite volume method</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Free convection</topic><topic>Heat flux</topic><topic>Heat generation</topic><topic>Heat transfer</topic><topic>Influence</topic><topic>Investigations</topic><topic>Magnetic fields</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Molecular</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Numerical analysis</topic><topic>Optical and Plasma Physics</topic><topic>Parameters</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Radiation</topic><topic>Regular Article</topic><topic>Sine waves</topic><topic>Theoretical</topic><topic>Thermal radiation</topic><topic>Titanium dioxide</topic><topic>Underground cables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaik, Jakeer</creatorcontrib><creatorcontrib>Polu, Bala Anki Reddy</creatorcontrib><creatorcontrib>Mohamed Ahmed, Mansour</creatorcontrib><creatorcontrib>Ahmed Mohamed, Rashad</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaik, Jakeer</au><au>Polu, Bala Anki Reddy</au><au>Mohamed Ahmed, Mansour</au><au>Ahmed Mohamed, Rashad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characteristics of moving hot block and non-Fourier heat flux model on sinusoidal wavy cavity filled with hybrid nanofluid</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2022-01-18</date><risdate>2022</risdate><volume>137</volume><issue>1</issue><spage>131</spage><pages>131-</pages><artnum>131</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>This paper examines the natural convection in a sinusoidal wavy cavity filled with TiO 2 –Cu/water hybrid nanofluid under the effect of internal heat generation, inclined magnetic field and thermal radiation. The non-Fourier heat flux model is utilized for the formulation of the temperature equation. This type of wavy cavity investigation is suitable in the cooling systems of microelectronic devices, wall bricks, underground cable systems and mass and heat transfers occurring in chemical reactors. The dimensionless forms of governing equations and boundary conditions are transformed numerically using the finite volume approach via the SIMPLER algorithm simultaneously with MATLAB solver. The gained outcomes are portrayed graphically via streamlines, isotherms, local and average Nusselt numbers. The heat transfer rate and fluid flow in view of internal heated and wavy walls play a significant role. The higher values of heat generation parameter increase the rate of heat transfer and decrease the local Nusselt numbers. Improving the undulation parameter increases the complexity of the flow domain and reduces convective transport as a result. When compared to TiO 2 nanoparticle, Cu nanoparticles generate a high heat transfer rate in Ha. The internal heat generation parameter is increased from − 2 to 2, it grouped the streamlines closer toward the heated wall and to the top of the cold wall.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-022-02361-y</doi><orcidid>https://orcid.org/0000-0001-5824-1796</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2022-01, Vol.137 (1), p.131, Article 131
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_2919735956
source SpringerLink Journals; ProQuest Central
subjects Algorithms
Applied and Technical Physics
Atomic
Boundary conditions
Catalysis
Chemical reactors
Complex Systems
Condensed Matter Physics
Cooling systems
Dimensionless numbers
Entropy
Finite volume method
Fluid flow
Fluids
Free convection
Heat flux
Heat generation
Heat transfer
Influence
Investigations
Magnetic fields
Mathematical and Computational Physics
Mathematical models
Molecular
Nanofluids
Nanoparticles
Numerical analysis
Optical and Plasma Physics
Parameters
Physics
Physics and Astronomy
Radiation
Regular Article
Sine waves
Theoretical
Thermal radiation
Titanium dioxide
Underground cables
title Characteristics of moving hot block and non-Fourier heat flux model on sinusoidal wavy cavity filled with hybrid nanofluid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A13%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characteristics%20of%20moving%20hot%20block%20and%20non-Fourier%20heat%20flux%20model%20on%20sinusoidal%20wavy%20cavity%20filled%20with%20hybrid%20nanofluid&rft.jtitle=European%20physical%20journal%20plus&rft.au=Shaik,%20Jakeer&rft.date=2022-01-18&rft.volume=137&rft.issue=1&rft.spage=131&rft.pages=131-&rft.artnum=131&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-022-02361-y&rft_dat=%3Cproquest_cross%3E2919735956%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919735956&rft_id=info:pmid/&rfr_iscdi=true