Characteristics of moving hot block and non-Fourier heat flux model on sinusoidal wavy cavity filled with hybrid nanofluid
This paper examines the natural convection in a sinusoidal wavy cavity filled with TiO 2 –Cu/water hybrid nanofluid under the effect of internal heat generation, inclined magnetic field and thermal radiation. The non-Fourier heat flux model is utilized for the formulation of the temperature equation...
Gespeichert in:
Veröffentlicht in: | European physical journal plus 2022-01, Vol.137 (1), p.131, Article 131 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 131 |
container_title | European physical journal plus |
container_volume | 137 |
creator | Shaik, Jakeer Polu, Bala Anki Reddy Mohamed Ahmed, Mansour Ahmed Mohamed, Rashad |
description | This paper examines the natural convection in a sinusoidal wavy cavity filled with TiO
2
–Cu/water hybrid nanofluid under the effect of internal heat generation, inclined magnetic field and thermal radiation. The non-Fourier heat flux model is utilized for the formulation of the temperature equation. This type of wavy cavity investigation is suitable in the cooling systems of microelectronic devices, wall bricks, underground cable systems and mass and heat transfers occurring in chemical reactors. The dimensionless forms of governing equations and boundary conditions are transformed numerically using the finite volume approach via the SIMPLER algorithm simultaneously with MATLAB solver. The gained outcomes are portrayed graphically via streamlines, isotherms, local and average Nusselt numbers. The heat transfer rate and fluid flow in view of internal heated and wavy walls play a significant role. The higher values of heat generation parameter increase the rate of heat transfer and decrease the local Nusselt numbers. Improving the undulation parameter increases the complexity of the flow domain and reduces convective transport as a result. When compared to TiO
2
nanoparticle, Cu nanoparticles generate a high heat transfer rate in Ha. The internal heat generation parameter is increased from − 2 to 2, it grouped the streamlines closer toward the heated wall and to the top of the cold wall. |
doi_str_mv | 10.1140/epjp/s13360-022-02361-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919735956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919735956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-3c73b982cac8eaac0561246f653e62fd446a03cf67606583ac6ec91e76212e73</originalsourceid><addsrcrecordid>eNqFkE9LwzAYh4soOOY-gwHPdfnXtDnKcCoMvOwesjRZM7tkJu1m_fRmVtCbgZe8h9_zC3my7BbBe4QonOvD7jCPiBAGc4hxGsJQPlxkE4w4zAtK6eWf_TqbxbiD6VCOKKeT7HPRyCBVp4ONnVUReAP2_mjdFjS-A5vWqzcgXQ2cd_nS98HqABotO2Da_iNFa90C70C0ro_e1rIFJ3kcgJJH2w3A2LbVNTjZrgHNsAk2FUnnE2vrm-zKyDbq2c89zdbLx_XiOV-9Pr0sHla5wox2OVEl2fAKK6kqLaWCBUOYMsMKohk2NaVMQqIMKxlkRUWkYlpxpEuGEdYlmWZ3Y-0h-Pdex07s0jdcelFgjnhJCl6wlCrHlAo-xqCNOAS7l2EQCIqzanFWLUbVIqkW36rFkMhqJGMi3FaH3_7_0C9h-Iep</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919735956</pqid></control><display><type>article</type><title>Characteristics of moving hot block and non-Fourier heat flux model on sinusoidal wavy cavity filled with hybrid nanofluid</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Shaik, Jakeer ; Polu, Bala Anki Reddy ; Mohamed Ahmed, Mansour ; Ahmed Mohamed, Rashad</creator><creatorcontrib>Shaik, Jakeer ; Polu, Bala Anki Reddy ; Mohamed Ahmed, Mansour ; Ahmed Mohamed, Rashad</creatorcontrib><description>This paper examines the natural convection in a sinusoidal wavy cavity filled with TiO
2
–Cu/water hybrid nanofluid under the effect of internal heat generation, inclined magnetic field and thermal radiation. The non-Fourier heat flux model is utilized for the formulation of the temperature equation. This type of wavy cavity investigation is suitable in the cooling systems of microelectronic devices, wall bricks, underground cable systems and mass and heat transfers occurring in chemical reactors. The dimensionless forms of governing equations and boundary conditions are transformed numerically using the finite volume approach via the SIMPLER algorithm simultaneously with MATLAB solver. The gained outcomes are portrayed graphically via streamlines, isotherms, local and average Nusselt numbers. The heat transfer rate and fluid flow in view of internal heated and wavy walls play a significant role. The higher values of heat generation parameter increase the rate of heat transfer and decrease the local Nusselt numbers. Improving the undulation parameter increases the complexity of the flow domain and reduces convective transport as a result. When compared to TiO
2
nanoparticle, Cu nanoparticles generate a high heat transfer rate in Ha. The internal heat generation parameter is increased from − 2 to 2, it grouped the streamlines closer toward the heated wall and to the top of the cold wall.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-022-02361-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Applied and Technical Physics ; Atomic ; Boundary conditions ; Catalysis ; Chemical reactors ; Complex Systems ; Condensed Matter Physics ; Cooling systems ; Dimensionless numbers ; Entropy ; Finite volume method ; Fluid flow ; Fluids ; Free convection ; Heat flux ; Heat generation ; Heat transfer ; Influence ; Investigations ; Magnetic fields ; Mathematical and Computational Physics ; Mathematical models ; Molecular ; Nanofluids ; Nanoparticles ; Numerical analysis ; Optical and Plasma Physics ; Parameters ; Physics ; Physics and Astronomy ; Radiation ; Regular Article ; Sine waves ; Theoretical ; Thermal radiation ; Titanium dioxide ; Underground cables</subject><ispartof>European physical journal plus, 2022-01, Vol.137 (1), p.131, Article 131</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-3c73b982cac8eaac0561246f653e62fd446a03cf67606583ac6ec91e76212e73</citedby><cites>FETCH-LOGICAL-c264t-3c73b982cac8eaac0561246f653e62fd446a03cf67606583ac6ec91e76212e73</cites><orcidid>0000-0001-5824-1796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-022-02361-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919735956?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Shaik, Jakeer</creatorcontrib><creatorcontrib>Polu, Bala Anki Reddy</creatorcontrib><creatorcontrib>Mohamed Ahmed, Mansour</creatorcontrib><creatorcontrib>Ahmed Mohamed, Rashad</creatorcontrib><title>Characteristics of moving hot block and non-Fourier heat flux model on sinusoidal wavy cavity filled with hybrid nanofluid</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>This paper examines the natural convection in a sinusoidal wavy cavity filled with TiO
2
–Cu/water hybrid nanofluid under the effect of internal heat generation, inclined magnetic field and thermal radiation. The non-Fourier heat flux model is utilized for the formulation of the temperature equation. This type of wavy cavity investigation is suitable in the cooling systems of microelectronic devices, wall bricks, underground cable systems and mass and heat transfers occurring in chemical reactors. The dimensionless forms of governing equations and boundary conditions are transformed numerically using the finite volume approach via the SIMPLER algorithm simultaneously with MATLAB solver. The gained outcomes are portrayed graphically via streamlines, isotherms, local and average Nusselt numbers. The heat transfer rate and fluid flow in view of internal heated and wavy walls play a significant role. The higher values of heat generation parameter increase the rate of heat transfer and decrease the local Nusselt numbers. Improving the undulation parameter increases the complexity of the flow domain and reduces convective transport as a result. When compared to TiO
2
nanoparticle, Cu nanoparticles generate a high heat transfer rate in Ha. The internal heat generation parameter is increased from − 2 to 2, it grouped the streamlines closer toward the heated wall and to the top of the cold wall.</description><subject>Algorithms</subject><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Boundary conditions</subject><subject>Catalysis</subject><subject>Chemical reactors</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Cooling systems</subject><subject>Dimensionless numbers</subject><subject>Entropy</subject><subject>Finite volume method</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Free convection</subject><subject>Heat flux</subject><subject>Heat generation</subject><subject>Heat transfer</subject><subject>Influence</subject><subject>Investigations</subject><subject>Magnetic fields</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Molecular</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Numerical analysis</subject><subject>Optical and Plasma Physics</subject><subject>Parameters</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Radiation</subject><subject>Regular Article</subject><subject>Sine waves</subject><subject>Theoretical</subject><subject>Thermal radiation</subject><subject>Titanium dioxide</subject><subject>Underground cables</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkE9LwzAYh4soOOY-gwHPdfnXtDnKcCoMvOwesjRZM7tkJu1m_fRmVtCbgZe8h9_zC3my7BbBe4QonOvD7jCPiBAGc4hxGsJQPlxkE4w4zAtK6eWf_TqbxbiD6VCOKKeT7HPRyCBVp4ONnVUReAP2_mjdFjS-A5vWqzcgXQ2cd_nS98HqABotO2Da_iNFa90C70C0ro_e1rIFJ3kcgJJH2w3A2LbVNTjZrgHNsAk2FUnnE2vrm-zKyDbq2c89zdbLx_XiOV-9Pr0sHla5wox2OVEl2fAKK6kqLaWCBUOYMsMKohk2NaVMQqIMKxlkRUWkYlpxpEuGEdYlmWZ3Y-0h-Pdex07s0jdcelFgjnhJCl6wlCrHlAo-xqCNOAS7l2EQCIqzanFWLUbVIqkW36rFkMhqJGMi3FaH3_7_0C9h-Iep</recordid><startdate>20220118</startdate><enddate>20220118</enddate><creator>Shaik, Jakeer</creator><creator>Polu, Bala Anki Reddy</creator><creator>Mohamed Ahmed, Mansour</creator><creator>Ahmed Mohamed, Rashad</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-5824-1796</orcidid></search><sort><creationdate>20220118</creationdate><title>Characteristics of moving hot block and non-Fourier heat flux model on sinusoidal wavy cavity filled with hybrid nanofluid</title><author>Shaik, Jakeer ; Polu, Bala Anki Reddy ; Mohamed Ahmed, Mansour ; Ahmed Mohamed, Rashad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-3c73b982cac8eaac0561246f653e62fd446a03cf67606583ac6ec91e76212e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Boundary conditions</topic><topic>Catalysis</topic><topic>Chemical reactors</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Cooling systems</topic><topic>Dimensionless numbers</topic><topic>Entropy</topic><topic>Finite volume method</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Free convection</topic><topic>Heat flux</topic><topic>Heat generation</topic><topic>Heat transfer</topic><topic>Influence</topic><topic>Investigations</topic><topic>Magnetic fields</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Molecular</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Numerical analysis</topic><topic>Optical and Plasma Physics</topic><topic>Parameters</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Radiation</topic><topic>Regular Article</topic><topic>Sine waves</topic><topic>Theoretical</topic><topic>Thermal radiation</topic><topic>Titanium dioxide</topic><topic>Underground cables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaik, Jakeer</creatorcontrib><creatorcontrib>Polu, Bala Anki Reddy</creatorcontrib><creatorcontrib>Mohamed Ahmed, Mansour</creatorcontrib><creatorcontrib>Ahmed Mohamed, Rashad</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaik, Jakeer</au><au>Polu, Bala Anki Reddy</au><au>Mohamed Ahmed, Mansour</au><au>Ahmed Mohamed, Rashad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characteristics of moving hot block and non-Fourier heat flux model on sinusoidal wavy cavity filled with hybrid nanofluid</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2022-01-18</date><risdate>2022</risdate><volume>137</volume><issue>1</issue><spage>131</spage><pages>131-</pages><artnum>131</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>This paper examines the natural convection in a sinusoidal wavy cavity filled with TiO
2
–Cu/water hybrid nanofluid under the effect of internal heat generation, inclined magnetic field and thermal radiation. The non-Fourier heat flux model is utilized for the formulation of the temperature equation. This type of wavy cavity investigation is suitable in the cooling systems of microelectronic devices, wall bricks, underground cable systems and mass and heat transfers occurring in chemical reactors. The dimensionless forms of governing equations and boundary conditions are transformed numerically using the finite volume approach via the SIMPLER algorithm simultaneously with MATLAB solver. The gained outcomes are portrayed graphically via streamlines, isotherms, local and average Nusselt numbers. The heat transfer rate and fluid flow in view of internal heated and wavy walls play a significant role. The higher values of heat generation parameter increase the rate of heat transfer and decrease the local Nusselt numbers. Improving the undulation parameter increases the complexity of the flow domain and reduces convective transport as a result. When compared to TiO
2
nanoparticle, Cu nanoparticles generate a high heat transfer rate in Ha. The internal heat generation parameter is increased from − 2 to 2, it grouped the streamlines closer toward the heated wall and to the top of the cold wall.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-022-02361-y</doi><orcidid>https://orcid.org/0000-0001-5824-1796</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5444 |
ispartof | European physical journal plus, 2022-01, Vol.137 (1), p.131, Article 131 |
issn | 2190-5444 2190-5444 |
language | eng |
recordid | cdi_proquest_journals_2919735956 |
source | SpringerLink Journals; ProQuest Central |
subjects | Algorithms Applied and Technical Physics Atomic Boundary conditions Catalysis Chemical reactors Complex Systems Condensed Matter Physics Cooling systems Dimensionless numbers Entropy Finite volume method Fluid flow Fluids Free convection Heat flux Heat generation Heat transfer Influence Investigations Magnetic fields Mathematical and Computational Physics Mathematical models Molecular Nanofluids Nanoparticles Numerical analysis Optical and Plasma Physics Parameters Physics Physics and Astronomy Radiation Regular Article Sine waves Theoretical Thermal radiation Titanium dioxide Underground cables |
title | Characteristics of moving hot block and non-Fourier heat flux model on sinusoidal wavy cavity filled with hybrid nanofluid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A13%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characteristics%20of%20moving%20hot%20block%20and%20non-Fourier%20heat%20flux%20model%20on%20sinusoidal%20wavy%20cavity%20filled%20with%20hybrid%20nanofluid&rft.jtitle=European%20physical%20journal%20plus&rft.au=Shaik,%20Jakeer&rft.date=2022-01-18&rft.volume=137&rft.issue=1&rft.spage=131&rft.pages=131-&rft.artnum=131&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-022-02361-y&rft_dat=%3Cproquest_cross%3E2919735956%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919735956&rft_id=info:pmid/&rfr_iscdi=true |