Sources and transformations of nitrite in the Amundsen Sea in summer 2019 and 2020 as revealed by nitrogen and oxygen isotopes

In this study, the nitrogen and oxygen isotope compositions of nitrite in the upper 150 m water column of the Amundsen Sea in the summer of 2019 and 2020 were measured to reveal the distribution and transformation of nitrite in the euphotic zone of the Southern Ocean. We found that primary nitrite m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta oceanologica Sinica 2023-04, Vol.42 (4), p.16-24
Hauptverfasser: Chen, Yangjun, Chen, Jinxu, Wang, Yi, Jiang, You, Zheng, Minfang, Qiu, Yusheng, Chen, Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, the nitrogen and oxygen isotope compositions of nitrite in the upper 150 m water column of the Amundsen Sea in the summer of 2019 and 2020 were measured to reveal the distribution and transformation of nitrite in the euphotic zone of the Southern Ocean. We found that primary nitrite maxima (PNMs) are widely present in the Amundsen Sea, where the depth of occurrence deepens from east to west and nitrite concentrations increases. Evidence from dual isotopes suggests that the formation of PNMs in all regions of the Amundsen Sea is dominated by ammonia oxidation. More importantly, the nitrogen and oxygen isotope compositions of nitrite in the Amundsen Sea mixed layer are abnormal, and their depth profiles are mirror symmetrical. Isotopic anomalies exhibit spatial variations, with central surface water having the lowest nitrogen isotope composition (−89.9‰±0.2‰) and western surface water having the highest oxygen isotope composition (63.3‰±0.3‰). Isotopic exchange reaction between nitrate and nitrite is responsible for these isotope anomalies, as both nitrogen and oxygen isotopes have large isotopic fractionation and opposite enrichment effects. This proves that isotopic exchange reaction operates extensively in different regions of the Amundsen Sea. Our study highlights the unique role of dual isotopes of nitrite in deepening the understanding of nitrogen cycle. Further studies on ammonia oxidation and isotopic exchange between nitrate and nitrite are warranted in the future to understand their roles in the nitrogen cycle in the Southern Ocean.
ISSN:0253-505X
1869-1099
DOI:10.1007/s13131-022-2111-4