The geometric theory of defects description for C60 fullerenes in a rotating frame
. In this paper we investigate a rotating fullerene molecule. We use a geometric theory to describe the fullerene as a two-dimensional spherical space in a rotating frame with topological defects submitted to a non-Abelian gauge field. We write an effective metric describing the fullerene molecule i...
Gespeichert in:
Veröffentlicht in: | European physical journal plus 2017-04, Vol.132 (4), p.183, Article 183 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | .
In this paper we investigate a rotating fullerene molecule. We use a geometric theory to describe the fullerene as a two-dimensional spherical space in a rotating frame with topological defects submitted to a non-Abelian gauge field. We write an effective metric describing the fullerene molecule in a rotating frame. We solve the massless Dirac equation in this model and obtain exactly the eigenvalues and eigenfunction of the Hamiltonian. The fullerene molecule is placed in the presence of an Aharanov-Bohm flux and the Hamiltonian for this case is solved exactly. Also, we obtain the analogue of the Aharonov-Carmi phase for this system in a rotating frame and find that the energy depends on the parameters characterizing the disclination, the non-Abelian gauge field and the angular velocity of the molecule. The influence of the rotation on the energy spectrum, eigenvalues, eigenvectors and geometric phase is discussed. |
---|---|
ISSN: | 2190-5444 2190-5444 |
DOI: | 10.1140/epjp/i2017-11457-1 |