Application of different entropy formalisms in a neural network for novel word learning
. In this paper novel word learning in adults is studied. For this goal, four entropy formalisms are employed to include some degree of non-locality in a neural network. The entropy formalisms are Tsallis, Landsberg-Vedral, Kaniadakis, and Abe entropies. First, we have analytically obtained non-exte...
Gespeichert in:
Veröffentlicht in: | European physical journal plus 2015-12, Vol.130 (12), p.246, Article 246 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | .
In this paper novel word learning in adults is studied. For this goal, four entropy formalisms are employed to include some degree of non-locality in a neural network. The entropy formalisms are Tsallis, Landsberg-Vedral, Kaniadakis, and Abe entropies. First, we have analytically obtained non-extensive cost functions for the all entropies. Then, we have used a generalization of the gradient descent dynamics as a learning rule in a simple perceptron. The Langevin equations are numerically solved and the error function (learning curve) is obtained
versus
time for different values of the parameters. The influence of index
q
and number of neuron
N
on learning is investigated for the all entropies. It is found that learning is a decreasing function of time for the all entropies. The rate of learning for the Landsberg-Vedral entropy is slower than other entropies. The variation of learning with time for the Landsberg-Vedral entropy is not appreciable when the number of neurons increases. It is said that entropy formalism can be used as a means for studying the learning. |
---|---|
ISSN: | 2190-5444 2190-5444 |
DOI: | 10.1140/epjp/i2015-15246-6 |