Vehicle fault detection and diagnosis combining an AANN and multiclass SVM

The main goals of a fault diagnosis system in a vehicle are to prevent dangerous situations for occupants. This domain is a complex system that turns the monitoring task a very challenging one. This paper presents a new approach based on history data process. In the first phase the approach learns b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal on interactive design and manufacturing 2018-02, Vol.12 (1), p.273-279
1. Verfasser: Nieto González, Juan Pablo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main goals of a fault diagnosis system in a vehicle are to prevent dangerous situations for occupants. This domain is a complex system that turns the monitoring task a very challenging one. This paper presents a new approach based on history data process. In the first phase the approach learns behaviour from normal operation of the system using an autoassociative neural network. In the second phase a multiclass support vector machine classifies the type of fault present giving the final diagnosis. Results are shown for a ten variables vehicle monitoring.
ISSN:1955-2513
1955-2505
DOI:10.1007/s12008-017-0378-z