Lorentz invariant quantum concurrence for SU(2)⊗SU(2) spin–parity states

The quantum concurrence of SU ( 2 ) ⊗ SU ( 2 ) spin–parity states is shown to be invariant under SO ( 1 , 3 ) Lorentz boosts and O (3) rotations when the density matrices are constructed in consonance with the covariant probabilistic distribution of Dirac massive particles. Similar invariance proper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus 2020-03, Vol.135 (3), p.320
Hauptverfasser: Bernardini, Alex E., Bittencourt, Victor A. S. V., Blasone, Massimo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The quantum concurrence of SU ( 2 ) ⊗ SU ( 2 ) spin–parity states is shown to be invariant under SO ( 1 , 3 ) Lorentz boosts and O (3) rotations when the density matrices are constructed in consonance with the covariant probabilistic distribution of Dirac massive particles. Similar invariance properties are obtained for the quantum purity and for the trace of unipotent density matrix operators. The reported invariance features—obtained in the scope of the SU ( 2 ) ⊗ SU ( 2 ) corresponding to just one of the inequivalent representations enclosed by the SL ( 2 , C ) ⊗ SL ( 2 , C ) symmetry—set a more universal and kinematical-independent meaning for the quantum entanglement encoded in systems containing not only information about spin polarization but also the correlated information about intrinsic parity. Such a covariant framework is used for computing the Lorentz invariant spin–parity entanglement of spinorial particles coupled to a magnetic field, through which the extensions to more general Poincaré classes of spinor interactions are straightforwardly depicted.
ISSN:2190-5444
DOI:10.1140/epjp/s13360-020-00323-w