Lorentz invariant quantum concurrence for SU(2)⊗SU(2) spin–parity states
The quantum concurrence of SU ( 2 ) ⊗ SU ( 2 ) spin–parity states is shown to be invariant under SO ( 1 , 3 ) Lorentz boosts and O (3) rotations when the density matrices are constructed in consonance with the covariant probabilistic distribution of Dirac massive particles. Similar invariance proper...
Gespeichert in:
Veröffentlicht in: | European physical journal plus 2020-03, Vol.135 (3), p.320 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The quantum concurrence of
SU
(
2
)
⊗
SU
(
2
)
spin–parity states is shown to be invariant under
SO
(
1
,
3
)
Lorentz boosts and
O
(3) rotations when the density matrices are constructed in consonance with the covariant probabilistic distribution of Dirac massive particles. Similar invariance properties are obtained for the quantum purity and for the trace of unipotent density matrix operators. The reported invariance features—obtained in the scope of the
SU
(
2
)
⊗
SU
(
2
)
corresponding to just one of the inequivalent representations enclosed by the
SL
(
2
,
C
)
⊗
SL
(
2
,
C
)
symmetry—set a more universal and kinematical-independent meaning for the quantum entanglement encoded in systems containing not only information about spin polarization but also the correlated information about intrinsic parity. Such a covariant framework is used for computing the Lorentz invariant spin–parity entanglement of spinorial particles coupled to a magnetic field, through which the extensions to more general Poincaré classes of spinor interactions are straightforwardly depicted. |
---|---|
ISSN: | 2190-5444 |
DOI: | 10.1140/epjp/s13360-020-00323-w |