Logical entropy on effect algebras with the Riesz decomposition property
. In this study, the notion of logical entropy is generalized for the case when the considered probability space is an effect algebra with the Riesz decomposition property. We define the logical entropy and conditional logical entropy of finite partitions in an effect algebra with the Riesz decompos...
Gespeichert in:
Veröffentlicht in: | European physical journal plus 2018-07, Vol.133 (7), p.286, Article 286 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | .
In this study, the notion of logical entropy is generalized for the case when the considered probability space is an effect algebra with the Riesz decomposition property. We define the logical entropy and conditional logical entropy of finite partitions in an effect algebra with the Riesz decomposition property and prove the basic properties of these measures. Furthermore, we introduce the concepts of logical cross entropy and logical divergence and discuss their desirable properties. |
---|---|
ISSN: | 2190-5444 2190-5444 |
DOI: | 10.1140/epjp/i2018-12107-x |