Logical entropy on effect algebras with the Riesz decomposition property

. In this study, the notion of logical entropy is generalized for the case when the considered probability space is an effect algebra with the Riesz decomposition property. We define the logical entropy and conditional logical entropy of finite partitions in an effect algebra with the Riesz decompos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus 2018-07, Vol.133 (7), p.286, Article 286
Hauptverfasser: Eslami Giski, Zahra, Ebrahimzadeh, Abolfazl, Markechová, Dagmar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:. In this study, the notion of logical entropy is generalized for the case when the considered probability space is an effect algebra with the Riesz decomposition property. We define the logical entropy and conditional logical entropy of finite partitions in an effect algebra with the Riesz decomposition property and prove the basic properties of these measures. Furthermore, we introduce the concepts of logical cross entropy and logical divergence and discuss their desirable properties.
ISSN:2190-5444
2190-5444
DOI:10.1140/epjp/i2018-12107-x