A very fast and efficient multistage selective convolution filter for removal of salt and pepper noise

In this paper we propose a multistage selective convolution filter (MSCF) for fast and efficient removal of salt-and-pepper noise (SPN) in digital images. By avoiding the use of order statistics or other computationally expensive procedures, the proposed denoising algorithm is efficiently implemente...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of ambient intelligence and humanized computing 2023-09, Vol.14 (9), p.1-17
Hauptverfasser: Rafiee, Ahmad Ali, Farhang, Mahmoud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we propose a multistage selective convolution filter (MSCF) for fast and efficient removal of salt-and-pepper noise (SPN) in digital images. By avoiding the use of order statistics or other computationally expensive procedures, the proposed denoising algorithm is efficiently implemented using convolution blocks, thereby a significant reduction in computation time is achieved. Moreover, in each stage of the proposed structure, a weighted mean filter of an appropriate kernel size is employed to selectively restore a set of noisy pixels qualified by a reliability criterion to improve the performance. The simulation results show that the proposed method denoises much faster than all its competent counterparts, while it achieves a significant performance in both quantitative criteria and visual effects. While noise removal by traditional methods such as AMF takes about 1.092 s and by fast state-of-the-art methods such as NAHAT takes about 0.065 s on each image of the BSDS500 dataset on average, the proposed method dramatically reduces the execution time to 0.005 s.
ISSN:1868-5137
1868-5145
DOI:10.1007/s12652-022-03747-7