Effect of spatially variable magnetic field on ferrofluid flow and heat transfer considering constant heat flux boundary condition

Ferrofluid flow and heat transfer in the presence of an external variable magnetic field is studied. The inner cylinder is maintained at uniform heat flux and the outer cylinder has constant temperature. The Control Volume based Finite Element Method (CVFEM) is applied to solve the governing equatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus 2014-11, Vol.129 (11), p.248, Article 248
1. Verfasser: Kandelousi, Mohsen Sheikholeslami
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ferrofluid flow and heat transfer in the presence of an external variable magnetic field is studied. The inner cylinder is maintained at uniform heat flux and the outer cylinder has constant temperature. The Control Volume based Finite Element Method (CVFEM) is applied to solve the governing equations. Combined magnetohydrodynamic and ferrohydrodynamic effects have been taken into account. The effects of magnetic number, Hartmann number, Rayleigh number and nanoparticle volume fraction on hydrothermal behavior have been examined. Results show that the Nusselt number is an increasing function of Magnetic number, Rayleigh number and nanoparticle volume fraction while it is a decreasing function of the Hartmann number. Also, it can be concluded that the enhancement in heat transfer decreases with an increase in the Rayleigh number and magnetic number but it increases with an increase in the Hartmann number.
ISSN:2190-5444
2190-5444
DOI:10.1140/epjp/i2014-14248-2