A numerical approach to maximizing efficiency in Sb2Se3 solar cells by using CuS as a hole transport material

The current paper uses the SCAPS-1D software to investigate the performance of the Al/n-ITO/n-CdS/p-Sb 2 Se 3 /p-CuS/Ni solar cell. After adjusting the simulated and experimental J – V features of the traditional ITO/CdS/Sb 2 Se 3 /Au solar cell with an efficiency of 7.6%, the influence of diverse f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus 2023-12, Vol.138 (12), p.1085, Article 1085
Hauptverfasser: El Khalfi, Abdelmajid, Ouhadou, Malika, Rais, Ilham, Essahlaoui, Fouad, Rahman, Md. Ferdous, Sahal, Mustapha, Elmaimouni, Lahoucine, Benami, Abdellah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 1085
container_title European physical journal plus
container_volume 138
creator El Khalfi, Abdelmajid
Ouhadou, Malika
Rais, Ilham
Essahlaoui, Fouad
Rahman, Md. Ferdous
Sahal, Mustapha
Elmaimouni, Lahoucine
Benami, Abdellah
description The current paper uses the SCAPS-1D software to investigate the performance of the Al/n-ITO/n-CdS/p-Sb 2 Se 3 /p-CuS/Ni solar cell. After adjusting the simulated and experimental J – V features of the traditional ITO/CdS/Sb 2 Se 3 /Au solar cell with an efficiency of 7.6%, the influence of diverse factors such as thickness, doping, defect density in each layer, and capture cross section in Sb 2 Se 3 and at the CdS/Sb 2 Se 3 interface on the cell’s performance is examined. The highest PCE achieved for the standard cell is 21.05% when the absorber, CdS and ITO layer thicknesses are reduced to 600 nm, 70 nm, and 100 nm, respectively, and their carrier concentrations are fixed at 5.10 15 , 10 19 , and 10 19  cm −3 , respectively. A new hole transport layer, consisting of inorganic copper sulfide (CuS), has been incorporated, thus improving the efficiency by blocking electrons and reducing carrier recombination. The effects of front and back contact work function, temperature, and cell resistance are also discussed. The rear-contact Ni and the front-contact Al were found to be the best arrangements with CuS HTL in the ITO/CdS/Sb 2 Se 3 structure cell. Therefore, the optimization of the proposed Al/ITO/CdS/Sb 2 Se 3 /CuS/Ni solar structure reveals good thermal stability with a higher PCE of 23.16% for V OC , J SC , and FF of 0.761 V, 37.59 mA/cm 2 , and 80.97%, respectively, at 300 K.
doi_str_mv 10.1140/epjp/s13360-023-04739-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919483395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919483395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-84d02500763645ffacef439751790b80013eb329077855203b2fe808e16e2a8c3</originalsourceid><addsrcrecordid>eNqFkEtLAzEQx4MoWGo_gwHPayeP7SbHUnxBwUP1HLIxaVP2ZbILrp_e1BX05lxmDv8H80PomsAtIRyWtjt2y0gYW0EGlGXACyaz8QzNKJGQ5Zzz8z_3JVrEeIQ0XBIu-QzVa9wMtQ3e6ArrrgutNgfct7jWH772n77ZY-ucN942ZsS-wbuS7izDsa10wMZWVcTliId4Um6GHdYRa3xoK4v7oJvYtaFPYX2q0NUVunC6inbxs-fo9f7uZfOYbZ8fnjbrbWYY430m-BvQHKBYsRXPndPGOs5kkZNCQikACLMloxKKQuQ5BVZSZwUIS1aWamHYHN1Muemf98HGXh3bITSpUlFJJBeMyTypikllQhtjsE51wdc6jIqAOuFVJ7xqwqsSXvWNV43JKSZnTI5mb8Nv_n_WL6RegNU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919483395</pqid></control><display><type>article</type><title>A numerical approach to maximizing efficiency in Sb2Se3 solar cells by using CuS as a hole transport material</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>El Khalfi, Abdelmajid ; Ouhadou, Malika ; Rais, Ilham ; Essahlaoui, Fouad ; Rahman, Md. Ferdous ; Sahal, Mustapha ; Elmaimouni, Lahoucine ; Benami, Abdellah</creator><creatorcontrib>El Khalfi, Abdelmajid ; Ouhadou, Malika ; Rais, Ilham ; Essahlaoui, Fouad ; Rahman, Md. Ferdous ; Sahal, Mustapha ; Elmaimouni, Lahoucine ; Benami, Abdellah</creatorcontrib><description>The current paper uses the SCAPS-1D software to investigate the performance of the Al/n-ITO/n-CdS/p-Sb 2 Se 3 /p-CuS/Ni solar cell. After adjusting the simulated and experimental J – V features of the traditional ITO/CdS/Sb 2 Se 3 /Au solar cell with an efficiency of 7.6%, the influence of diverse factors such as thickness, doping, defect density in each layer, and capture cross section in Sb 2 Se 3 and at the CdS/Sb 2 Se 3 interface on the cell’s performance is examined. The highest PCE achieved for the standard cell is 21.05% when the absorber, CdS and ITO layer thicknesses are reduced to 600 nm, 70 nm, and 100 nm, respectively, and their carrier concentrations are fixed at 5.10 15 , 10 19 , and 10 19  cm −3 , respectively. A new hole transport layer, consisting of inorganic copper sulfide (CuS), has been incorporated, thus improving the efficiency by blocking electrons and reducing carrier recombination. The effects of front and back contact work function, temperature, and cell resistance are also discussed. The rear-contact Ni and the front-contact Al were found to be the best arrangements with CuS HTL in the ITO/CdS/Sb 2 Se 3 structure cell. Therefore, the optimization of the proposed Al/ITO/CdS/Sb 2 Se 3 /CuS/Ni solar structure reveals good thermal stability with a higher PCE of 23.16% for V OC , J SC , and FF of 0.761 V, 37.59 mA/cm 2 , and 80.97%, respectively, at 300 K.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-023-04739-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Absorption cross sections ; Aluminum ; Antimony compounds ; Applied and Technical Physics ; Atomic ; Carrier density ; Carrier recombination ; Complex Systems ; Condensed Matter Physics ; Copper sulfides ; Defects ; Efficiency ; Interfaces ; Mathematical and Computational Physics ; Molecular ; Nickel ; Optical and Plasma Physics ; Photovoltaic cells ; Physics ; Physics and Astronomy ; Regular Article ; Selenides ; Simulation ; Solar cells ; Sulfide compounds ; Theoretical ; Thermal stability ; Thickness ; Toxicity ; Work functions</subject><ispartof>European physical journal plus, 2023-12, Vol.138 (12), p.1085, Article 1085</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-84d02500763645ffacef439751790b80013eb329077855203b2fe808e16e2a8c3</citedby><cites>FETCH-LOGICAL-c334t-84d02500763645ffacef439751790b80013eb329077855203b2fe808e16e2a8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-023-04739-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919483395?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,21369,27905,27906,33725,41469,42538,43786,51300,64364,64368,72218</link.rule.ids></links><search><creatorcontrib>El Khalfi, Abdelmajid</creatorcontrib><creatorcontrib>Ouhadou, Malika</creatorcontrib><creatorcontrib>Rais, Ilham</creatorcontrib><creatorcontrib>Essahlaoui, Fouad</creatorcontrib><creatorcontrib>Rahman, Md. Ferdous</creatorcontrib><creatorcontrib>Sahal, Mustapha</creatorcontrib><creatorcontrib>Elmaimouni, Lahoucine</creatorcontrib><creatorcontrib>Benami, Abdellah</creatorcontrib><title>A numerical approach to maximizing efficiency in Sb2Se3 solar cells by using CuS as a hole transport material</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>The current paper uses the SCAPS-1D software to investigate the performance of the Al/n-ITO/n-CdS/p-Sb 2 Se 3 /p-CuS/Ni solar cell. After adjusting the simulated and experimental J – V features of the traditional ITO/CdS/Sb 2 Se 3 /Au solar cell with an efficiency of 7.6%, the influence of diverse factors such as thickness, doping, defect density in each layer, and capture cross section in Sb 2 Se 3 and at the CdS/Sb 2 Se 3 interface on the cell’s performance is examined. The highest PCE achieved for the standard cell is 21.05% when the absorber, CdS and ITO layer thicknesses are reduced to 600 nm, 70 nm, and 100 nm, respectively, and their carrier concentrations are fixed at 5.10 15 , 10 19 , and 10 19  cm −3 , respectively. A new hole transport layer, consisting of inorganic copper sulfide (CuS), has been incorporated, thus improving the efficiency by blocking electrons and reducing carrier recombination. The effects of front and back contact work function, temperature, and cell resistance are also discussed. The rear-contact Ni and the front-contact Al were found to be the best arrangements with CuS HTL in the ITO/CdS/Sb 2 Se 3 structure cell. Therefore, the optimization of the proposed Al/ITO/CdS/Sb 2 Se 3 /CuS/Ni solar structure reveals good thermal stability with a higher PCE of 23.16% for V OC , J SC , and FF of 0.761 V, 37.59 mA/cm 2 , and 80.97%, respectively, at 300 K.</description><subject>Absorption cross sections</subject><subject>Aluminum</subject><subject>Antimony compounds</subject><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Carrier density</subject><subject>Carrier recombination</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Copper sulfides</subject><subject>Defects</subject><subject>Efficiency</subject><subject>Interfaces</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Nickel</subject><subject>Optical and Plasma Physics</subject><subject>Photovoltaic cells</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Selenides</subject><subject>Simulation</subject><subject>Solar cells</subject><subject>Sulfide compounds</subject><subject>Theoretical</subject><subject>Thermal stability</subject><subject>Thickness</subject><subject>Toxicity</subject><subject>Work functions</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkEtLAzEQx4MoWGo_gwHPayeP7SbHUnxBwUP1HLIxaVP2ZbILrp_e1BX05lxmDv8H80PomsAtIRyWtjt2y0gYW0EGlGXACyaz8QzNKJGQ5Zzz8z_3JVrEeIQ0XBIu-QzVa9wMtQ3e6ArrrgutNgfct7jWH772n77ZY-ucN942ZsS-wbuS7izDsa10wMZWVcTliId4Um6GHdYRa3xoK4v7oJvYtaFPYX2q0NUVunC6inbxs-fo9f7uZfOYbZ8fnjbrbWYY430m-BvQHKBYsRXPndPGOs5kkZNCQikACLMloxKKQuQ5BVZSZwUIS1aWamHYHN1Muemf98HGXh3bITSpUlFJJBeMyTypikllQhtjsE51wdc6jIqAOuFVJ7xqwqsSXvWNV43JKSZnTI5mb8Nv_n_WL6RegNU</recordid><startdate>20231206</startdate><enddate>20231206</enddate><creator>El Khalfi, Abdelmajid</creator><creator>Ouhadou, Malika</creator><creator>Rais, Ilham</creator><creator>Essahlaoui, Fouad</creator><creator>Rahman, Md. Ferdous</creator><creator>Sahal, Mustapha</creator><creator>Elmaimouni, Lahoucine</creator><creator>Benami, Abdellah</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20231206</creationdate><title>A numerical approach to maximizing efficiency in Sb2Se3 solar cells by using CuS as a hole transport material</title><author>El Khalfi, Abdelmajid ; Ouhadou, Malika ; Rais, Ilham ; Essahlaoui, Fouad ; Rahman, Md. Ferdous ; Sahal, Mustapha ; Elmaimouni, Lahoucine ; Benami, Abdellah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-84d02500763645ffacef439751790b80013eb329077855203b2fe808e16e2a8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption cross sections</topic><topic>Aluminum</topic><topic>Antimony compounds</topic><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Carrier density</topic><topic>Carrier recombination</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Copper sulfides</topic><topic>Defects</topic><topic>Efficiency</topic><topic>Interfaces</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Nickel</topic><topic>Optical and Plasma Physics</topic><topic>Photovoltaic cells</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Selenides</topic><topic>Simulation</topic><topic>Solar cells</topic><topic>Sulfide compounds</topic><topic>Theoretical</topic><topic>Thermal stability</topic><topic>Thickness</topic><topic>Toxicity</topic><topic>Work functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Khalfi, Abdelmajid</creatorcontrib><creatorcontrib>Ouhadou, Malika</creatorcontrib><creatorcontrib>Rais, Ilham</creatorcontrib><creatorcontrib>Essahlaoui, Fouad</creatorcontrib><creatorcontrib>Rahman, Md. Ferdous</creatorcontrib><creatorcontrib>Sahal, Mustapha</creatorcontrib><creatorcontrib>Elmaimouni, Lahoucine</creatorcontrib><creatorcontrib>Benami, Abdellah</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Khalfi, Abdelmajid</au><au>Ouhadou, Malika</au><au>Rais, Ilham</au><au>Essahlaoui, Fouad</au><au>Rahman, Md. Ferdous</au><au>Sahal, Mustapha</au><au>Elmaimouni, Lahoucine</au><au>Benami, Abdellah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A numerical approach to maximizing efficiency in Sb2Se3 solar cells by using CuS as a hole transport material</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2023-12-06</date><risdate>2023</risdate><volume>138</volume><issue>12</issue><spage>1085</spage><pages>1085-</pages><artnum>1085</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>The current paper uses the SCAPS-1D software to investigate the performance of the Al/n-ITO/n-CdS/p-Sb 2 Se 3 /p-CuS/Ni solar cell. After adjusting the simulated and experimental J – V features of the traditional ITO/CdS/Sb 2 Se 3 /Au solar cell with an efficiency of 7.6%, the influence of diverse factors such as thickness, doping, defect density in each layer, and capture cross section in Sb 2 Se 3 and at the CdS/Sb 2 Se 3 interface on the cell’s performance is examined. The highest PCE achieved for the standard cell is 21.05% when the absorber, CdS and ITO layer thicknesses are reduced to 600 nm, 70 nm, and 100 nm, respectively, and their carrier concentrations are fixed at 5.10 15 , 10 19 , and 10 19  cm −3 , respectively. A new hole transport layer, consisting of inorganic copper sulfide (CuS), has been incorporated, thus improving the efficiency by blocking electrons and reducing carrier recombination. The effects of front and back contact work function, temperature, and cell resistance are also discussed. The rear-contact Ni and the front-contact Al were found to be the best arrangements with CuS HTL in the ITO/CdS/Sb 2 Se 3 structure cell. Therefore, the optimization of the proposed Al/ITO/CdS/Sb 2 Se 3 /CuS/Ni solar structure reveals good thermal stability with a higher PCE of 23.16% for V OC , J SC , and FF of 0.761 V, 37.59 mA/cm 2 , and 80.97%, respectively, at 300 K.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-023-04739-y</doi></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2023-12, Vol.138 (12), p.1085, Article 1085
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_2919483395
source Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Absorption cross sections
Aluminum
Antimony compounds
Applied and Technical Physics
Atomic
Carrier density
Carrier recombination
Complex Systems
Condensed Matter Physics
Copper sulfides
Defects
Efficiency
Interfaces
Mathematical and Computational Physics
Molecular
Nickel
Optical and Plasma Physics
Photovoltaic cells
Physics
Physics and Astronomy
Regular Article
Selenides
Simulation
Solar cells
Sulfide compounds
Theoretical
Thermal stability
Thickness
Toxicity
Work functions
title A numerical approach to maximizing efficiency in Sb2Se3 solar cells by using CuS as a hole transport material
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A11%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20numerical%20approach%20to%20maximizing%20efficiency%20in%20Sb2Se3%20solar%20cells%20by%20using%20CuS%20as%20a%20hole%20transport%20material&rft.jtitle=European%20physical%20journal%20plus&rft.au=El%20Khalfi,%20Abdelmajid&rft.date=2023-12-06&rft.volume=138&rft.issue=12&rft.spage=1085&rft.pages=1085-&rft.artnum=1085&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-023-04739-y&rft_dat=%3Cproquest_cross%3E2919483395%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919483395&rft_id=info:pmid/&rfr_iscdi=true