A SiGe-Source Doping-Less Double-Gate Tunnel FET: Design and Analysis Based on Charge Plasma Technique with Enhanced Performance
In this article, a distinctive charge plasma (CP) technique is employed to design two doping-less dual gate tunnel field effect transistors (DL-DG-TFETs) with Si 0.5 Ge 0.5 and Si as source material. The CP methodology resolves the issues of random doping fluctuation and doping activation. The analo...
Gespeichert in:
Veröffentlicht in: | SILICON 2022-04, Vol.14 (5), p.2275-2282 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2282 |
---|---|
container_issue | 5 |
container_start_page | 2275 |
container_title | SILICON |
container_volume | 14 |
creator | Mishra, Varun Verma, Yogesh Kumar Gupta, Santosh Kumar Rathi, Vikas |
description | In this article, a distinctive charge plasma (CP) technique is employed to design two doping-less dual gate tunnel field effect transistors (DL-DG-TFETs) with Si
0.5
Ge
0.5
and Si as source material. The CP methodology resolves the issues of random doping fluctuation and doping activation. The analog and RF performance has been investigated for both the proposed devices i.e. Si
0.5
Ge
0.5
source DL-DG-TFET and Si-source DL-DG-TFET in terms of drive current, transconductance, cut-off frequency. In addition, the linearity and distortion analysis has been carried out for both the proposed devices with respect to higher order transconductance (g
m2
and g
m3
), VIP2, IMD3, and HD2. The Si
0.5
Ge
0.5
source DL-DG-TFET has better performance characteristics and reliability in compare to Si-source DL-DG-TFET owing to low energy bandgap material and higher mobility. The switching ratio obtained for Si
0.5
Ge
0.5
source DL-DG-TFET is order of 5 × 10
14
that makes it a suitable contender for low power applications. |
doi_str_mv | 10.1007/s12633-021-01030-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919479959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919479959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-d0da9a1a12387167f89725ed8a1c55f6bd055e51280160d2bf9bd7984f87eeaa3</originalsourceid><addsrcrecordid>eNp9UMtKA0EQXETBEPMDngY8j84jOw9vMYlRCBhIBG_DZLf3ETazcSaL5OanOzGiN_vS3VBVXV1Jck3JLSVE3gXKBOeYMIoJJZxgcZb0qJICa03V-e9M3i6TQQgbEoszqYTuJZ8jtKxngJdt5zNAk3ZXuxLPIYQ4d-sG8MzuAa0656BBj9PVPZpAqEuHrMvRyNnmEOqAHmyAHLUOjSvrS0CLxoatRSvIKle_d4A-6n2Fpq6yLovABfii9dvjcpVcFLYJMPjp_eQ1Xhk_4fnL7Hk8muOMC77HOcmtttRSxpWkQhZKS5ZCrizN0rQQ65ykKaSUKUIFydm60OtcajUslASwlveTm5PuzrfRUNibTXw5-g-GaaqHUutURxQ7oTLfhuChMDtfb60_GErMMWxzCtvEsM132EZEEj-RQgS7Evyf9D-sLx10gRM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919479959</pqid></control><display><type>article</type><title>A SiGe-Source Doping-Less Double-Gate Tunnel FET: Design and Analysis Based on Charge Plasma Technique with Enhanced Performance</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Mishra, Varun ; Verma, Yogesh Kumar ; Gupta, Santosh Kumar ; Rathi, Vikas</creator><creatorcontrib>Mishra, Varun ; Verma, Yogesh Kumar ; Gupta, Santosh Kumar ; Rathi, Vikas</creatorcontrib><description>In this article, a distinctive charge plasma (CP) technique is employed to design two doping-less dual gate tunnel field effect transistors (DL-DG-TFETs) with Si
0.5
Ge
0.5
and Si as source material. The CP methodology resolves the issues of random doping fluctuation and doping activation. The analog and RF performance has been investigated for both the proposed devices i.e. Si
0.5
Ge
0.5
source DL-DG-TFET and Si-source DL-DG-TFET in terms of drive current, transconductance, cut-off frequency. In addition, the linearity and distortion analysis has been carried out for both the proposed devices with respect to higher order transconductance (g
m2
and g
m3
), VIP2, IMD3, and HD2. The Si
0.5
Ge
0.5
source DL-DG-TFET has better performance characteristics and reliability in compare to Si-source DL-DG-TFET owing to low energy bandgap material and higher mobility. The switching ratio obtained for Si
0.5
Ge
0.5
source DL-DG-TFET is order of 5 × 10
14
that makes it a suitable contender for low power applications.</description><identifier>ISSN: 1876-990X</identifier><identifier>EISSN: 1876-9918</identifier><identifier>DOI: 10.1007/s12633-021-01030-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Chemistry ; Chemistry and Materials Science ; Communication ; Doping ; Energy ; Environmental Chemistry ; Field effect transistors ; Inorganic Chemistry ; Lasers ; Materials Science ; Optical Devices ; Optics ; Original Paper ; Performance enhancement ; Photonics ; Plasma ; Polymer Sciences ; Semiconductor devices ; Transconductance ; Transistors ; Tunnels</subject><ispartof>SILICON, 2022-04, Vol.14 (5), p.2275-2282</ispartof><rights>Springer Nature B.V. 2021</rights><rights>Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-d0da9a1a12387167f89725ed8a1c55f6bd055e51280160d2bf9bd7984f87eeaa3</citedby><cites>FETCH-LOGICAL-c363t-d0da9a1a12387167f89725ed8a1c55f6bd055e51280160d2bf9bd7984f87eeaa3</cites><orcidid>0000-0002-9264-9338</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12633-021-01030-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919479959?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,778,782,21371,27907,27908,33727,41471,42540,43788,51302,64366,64370,72220</link.rule.ids></links><search><creatorcontrib>Mishra, Varun</creatorcontrib><creatorcontrib>Verma, Yogesh Kumar</creatorcontrib><creatorcontrib>Gupta, Santosh Kumar</creatorcontrib><creatorcontrib>Rathi, Vikas</creatorcontrib><title>A SiGe-Source Doping-Less Double-Gate Tunnel FET: Design and Analysis Based on Charge Plasma Technique with Enhanced Performance</title><title>SILICON</title><addtitle>Silicon</addtitle><description>In this article, a distinctive charge plasma (CP) technique is employed to design two doping-less dual gate tunnel field effect transistors (DL-DG-TFETs) with Si
0.5
Ge
0.5
and Si as source material. The CP methodology resolves the issues of random doping fluctuation and doping activation. The analog and RF performance has been investigated for both the proposed devices i.e. Si
0.5
Ge
0.5
source DL-DG-TFET and Si-source DL-DG-TFET in terms of drive current, transconductance, cut-off frequency. In addition, the linearity and distortion analysis has been carried out for both the proposed devices with respect to higher order transconductance (g
m2
and g
m3
), VIP2, IMD3, and HD2. The Si
0.5
Ge
0.5
source DL-DG-TFET has better performance characteristics and reliability in compare to Si-source DL-DG-TFET owing to low energy bandgap material and higher mobility. The switching ratio obtained for Si
0.5
Ge
0.5
source DL-DG-TFET is order of 5 × 10
14
that makes it a suitable contender for low power applications.</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Communication</subject><subject>Doping</subject><subject>Energy</subject><subject>Environmental Chemistry</subject><subject>Field effect transistors</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Original Paper</subject><subject>Performance enhancement</subject><subject>Photonics</subject><subject>Plasma</subject><subject>Polymer Sciences</subject><subject>Semiconductor devices</subject><subject>Transconductance</subject><subject>Transistors</subject><subject>Tunnels</subject><issn>1876-990X</issn><issn>1876-9918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9UMtKA0EQXETBEPMDngY8j84jOw9vMYlRCBhIBG_DZLf3ETazcSaL5OanOzGiN_vS3VBVXV1Jck3JLSVE3gXKBOeYMIoJJZxgcZb0qJICa03V-e9M3i6TQQgbEoszqYTuJZ8jtKxngJdt5zNAk3ZXuxLPIYQ4d-sG8MzuAa0656BBj9PVPZpAqEuHrMvRyNnmEOqAHmyAHLUOjSvrS0CLxoatRSvIKle_d4A-6n2Fpq6yLovABfii9dvjcpVcFLYJMPjp_eQ1Xhk_4fnL7Hk8muOMC77HOcmtttRSxpWkQhZKS5ZCrizN0rQQ65ykKaSUKUIFydm60OtcajUslASwlveTm5PuzrfRUNibTXw5-g-GaaqHUutURxQ7oTLfhuChMDtfb60_GErMMWxzCtvEsM132EZEEj-RQgS7Evyf9D-sLx10gRM</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Mishra, Varun</creator><creator>Verma, Yogesh Kumar</creator><creator>Gupta, Santosh Kumar</creator><creator>Rathi, Vikas</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-9264-9338</orcidid></search><sort><creationdate>20220401</creationdate><title>A SiGe-Source Doping-Less Double-Gate Tunnel FET: Design and Analysis Based on Charge Plasma Technique with Enhanced Performance</title><author>Mishra, Varun ; Verma, Yogesh Kumar ; Gupta, Santosh Kumar ; Rathi, Vikas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-d0da9a1a12387167f89725ed8a1c55f6bd055e51280160d2bf9bd7984f87eeaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Communication</topic><topic>Doping</topic><topic>Energy</topic><topic>Environmental Chemistry</topic><topic>Field effect transistors</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Original Paper</topic><topic>Performance enhancement</topic><topic>Photonics</topic><topic>Plasma</topic><topic>Polymer Sciences</topic><topic>Semiconductor devices</topic><topic>Transconductance</topic><topic>Transistors</topic><topic>Tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mishra, Varun</creatorcontrib><creatorcontrib>Verma, Yogesh Kumar</creatorcontrib><creatorcontrib>Gupta, Santosh Kumar</creatorcontrib><creatorcontrib>Rathi, Vikas</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>SILICON</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mishra, Varun</au><au>Verma, Yogesh Kumar</au><au>Gupta, Santosh Kumar</au><au>Rathi, Vikas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A SiGe-Source Doping-Less Double-Gate Tunnel FET: Design and Analysis Based on Charge Plasma Technique with Enhanced Performance</atitle><jtitle>SILICON</jtitle><stitle>Silicon</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>14</volume><issue>5</issue><spage>2275</spage><epage>2282</epage><pages>2275-2282</pages><issn>1876-990X</issn><eissn>1876-9918</eissn><abstract>In this article, a distinctive charge plasma (CP) technique is employed to design two doping-less dual gate tunnel field effect transistors (DL-DG-TFETs) with Si
0.5
Ge
0.5
and Si as source material. The CP methodology resolves the issues of random doping fluctuation and doping activation. The analog and RF performance has been investigated for both the proposed devices i.e. Si
0.5
Ge
0.5
source DL-DG-TFET and Si-source DL-DG-TFET in terms of drive current, transconductance, cut-off frequency. In addition, the linearity and distortion analysis has been carried out for both the proposed devices with respect to higher order transconductance (g
m2
and g
m3
), VIP2, IMD3, and HD2. The Si
0.5
Ge
0.5
source DL-DG-TFET has better performance characteristics and reliability in compare to Si-source DL-DG-TFET owing to low energy bandgap material and higher mobility. The switching ratio obtained for Si
0.5
Ge
0.5
source DL-DG-TFET is order of 5 × 10
14
that makes it a suitable contender for low power applications.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s12633-021-01030-6</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9264-9338</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1876-990X |
ispartof | SILICON, 2022-04, Vol.14 (5), p.2275-2282 |
issn | 1876-990X 1876-9918 |
language | eng |
recordid | cdi_proquest_journals_2919479959 |
source | SpringerLink Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Chemistry Chemistry and Materials Science Communication Doping Energy Environmental Chemistry Field effect transistors Inorganic Chemistry Lasers Materials Science Optical Devices Optics Original Paper Performance enhancement Photonics Plasma Polymer Sciences Semiconductor devices Transconductance Transistors Tunnels |
title | A SiGe-Source Doping-Less Double-Gate Tunnel FET: Design and Analysis Based on Charge Plasma Technique with Enhanced Performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A01%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20SiGe-Source%20Doping-Less%20Double-Gate%20Tunnel%20FET:%20Design%20and%20Analysis%20Based%20on%20Charge%20Plasma%20Technique%20with%20Enhanced%20Performance&rft.jtitle=SILICON&rft.au=Mishra,%20Varun&rft.date=2022-04-01&rft.volume=14&rft.issue=5&rft.spage=2275&rft.epage=2282&rft.pages=2275-2282&rft.issn=1876-990X&rft.eissn=1876-9918&rft_id=info:doi/10.1007/s12633-021-01030-6&rft_dat=%3Cproquest_cross%3E2919479959%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919479959&rft_id=info:pmid/&rfr_iscdi=true |