A SiGe-Source Doping-Less Double-Gate Tunnel FET: Design and Analysis Based on Charge Plasma Technique with Enhanced Performance

In this article, a distinctive charge plasma (CP) technique is employed to design two doping-less dual gate tunnel field effect transistors (DL-DG-TFETs) with Si 0.5 Ge 0.5 and Si as source material. The CP methodology resolves the issues of random doping fluctuation and doping activation. The analo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SILICON 2022-04, Vol.14 (5), p.2275-2282
Hauptverfasser: Mishra, Varun, Verma, Yogesh Kumar, Gupta, Santosh Kumar, Rathi, Vikas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2282
container_issue 5
container_start_page 2275
container_title SILICON
container_volume 14
creator Mishra, Varun
Verma, Yogesh Kumar
Gupta, Santosh Kumar
Rathi, Vikas
description In this article, a distinctive charge plasma (CP) technique is employed to design two doping-less dual gate tunnel field effect transistors (DL-DG-TFETs) with Si 0.5 Ge 0.5 and Si as source material. The CP methodology resolves the issues of random doping fluctuation and doping activation. The analog and RF performance has been investigated for both the proposed devices i.e. Si 0.5 Ge 0.5 source DL-DG-TFET and Si-source DL-DG-TFET in terms of drive current, transconductance, cut-off frequency. In addition, the linearity and distortion analysis has been carried out for both the proposed devices with respect to higher order transconductance (g m2 and g m3 ), VIP2, IMD3, and HD2. The Si 0.5 Ge 0.5 source DL-DG-TFET has better performance characteristics and reliability in compare to Si-source DL-DG-TFET owing to low energy bandgap material and higher mobility. The switching ratio obtained for Si 0.5 Ge 0.5 source DL-DG-TFET is order of 5 × 10 14 that makes it a suitable contender for low power applications.
doi_str_mv 10.1007/s12633-021-01030-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919479959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919479959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-d0da9a1a12387167f89725ed8a1c55f6bd055e51280160d2bf9bd7984f87eeaa3</originalsourceid><addsrcrecordid>eNp9UMtKA0EQXETBEPMDngY8j84jOw9vMYlRCBhIBG_DZLf3ETazcSaL5OanOzGiN_vS3VBVXV1Jck3JLSVE3gXKBOeYMIoJJZxgcZb0qJICa03V-e9M3i6TQQgbEoszqYTuJZ8jtKxngJdt5zNAk3ZXuxLPIYQ4d-sG8MzuAa0656BBj9PVPZpAqEuHrMvRyNnmEOqAHmyAHLUOjSvrS0CLxoatRSvIKle_d4A-6n2Fpq6yLovABfii9dvjcpVcFLYJMPjp_eQ1Xhk_4fnL7Hk8muOMC77HOcmtttRSxpWkQhZKS5ZCrizN0rQQ65ykKaSUKUIFydm60OtcajUslASwlveTm5PuzrfRUNibTXw5-g-GaaqHUutURxQ7oTLfhuChMDtfb60_GErMMWxzCtvEsM132EZEEj-RQgS7Evyf9D-sLx10gRM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919479959</pqid></control><display><type>article</type><title>A SiGe-Source Doping-Less Double-Gate Tunnel FET: Design and Analysis Based on Charge Plasma Technique with Enhanced Performance</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Mishra, Varun ; Verma, Yogesh Kumar ; Gupta, Santosh Kumar ; Rathi, Vikas</creator><creatorcontrib>Mishra, Varun ; Verma, Yogesh Kumar ; Gupta, Santosh Kumar ; Rathi, Vikas</creatorcontrib><description>In this article, a distinctive charge plasma (CP) technique is employed to design two doping-less dual gate tunnel field effect transistors (DL-DG-TFETs) with Si 0.5 Ge 0.5 and Si as source material. The CP methodology resolves the issues of random doping fluctuation and doping activation. The analog and RF performance has been investigated for both the proposed devices i.e. Si 0.5 Ge 0.5 source DL-DG-TFET and Si-source DL-DG-TFET in terms of drive current, transconductance, cut-off frequency. In addition, the linearity and distortion analysis has been carried out for both the proposed devices with respect to higher order transconductance (g m2 and g m3 ), VIP2, IMD3, and HD2. The Si 0.5 Ge 0.5 source DL-DG-TFET has better performance characteristics and reliability in compare to Si-source DL-DG-TFET owing to low energy bandgap material and higher mobility. The switching ratio obtained for Si 0.5 Ge 0.5 source DL-DG-TFET is order of 5 × 10 14 that makes it a suitable contender for low power applications.</description><identifier>ISSN: 1876-990X</identifier><identifier>EISSN: 1876-9918</identifier><identifier>DOI: 10.1007/s12633-021-01030-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Chemistry ; Chemistry and Materials Science ; Communication ; Doping ; Energy ; Environmental Chemistry ; Field effect transistors ; Inorganic Chemistry ; Lasers ; Materials Science ; Optical Devices ; Optics ; Original Paper ; Performance enhancement ; Photonics ; Plasma ; Polymer Sciences ; Semiconductor devices ; Transconductance ; Transistors ; Tunnels</subject><ispartof>SILICON, 2022-04, Vol.14 (5), p.2275-2282</ispartof><rights>Springer Nature B.V. 2021</rights><rights>Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-d0da9a1a12387167f89725ed8a1c55f6bd055e51280160d2bf9bd7984f87eeaa3</citedby><cites>FETCH-LOGICAL-c363t-d0da9a1a12387167f89725ed8a1c55f6bd055e51280160d2bf9bd7984f87eeaa3</cites><orcidid>0000-0002-9264-9338</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12633-021-01030-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919479959?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,778,782,21371,27907,27908,33727,41471,42540,43788,51302,64366,64370,72220</link.rule.ids></links><search><creatorcontrib>Mishra, Varun</creatorcontrib><creatorcontrib>Verma, Yogesh Kumar</creatorcontrib><creatorcontrib>Gupta, Santosh Kumar</creatorcontrib><creatorcontrib>Rathi, Vikas</creatorcontrib><title>A SiGe-Source Doping-Less Double-Gate Tunnel FET: Design and Analysis Based on Charge Plasma Technique with Enhanced Performance</title><title>SILICON</title><addtitle>Silicon</addtitle><description>In this article, a distinctive charge plasma (CP) technique is employed to design two doping-less dual gate tunnel field effect transistors (DL-DG-TFETs) with Si 0.5 Ge 0.5 and Si as source material. The CP methodology resolves the issues of random doping fluctuation and doping activation. The analog and RF performance has been investigated for both the proposed devices i.e. Si 0.5 Ge 0.5 source DL-DG-TFET and Si-source DL-DG-TFET in terms of drive current, transconductance, cut-off frequency. In addition, the linearity and distortion analysis has been carried out for both the proposed devices with respect to higher order transconductance (g m2 and g m3 ), VIP2, IMD3, and HD2. The Si 0.5 Ge 0.5 source DL-DG-TFET has better performance characteristics and reliability in compare to Si-source DL-DG-TFET owing to low energy bandgap material and higher mobility. The switching ratio obtained for Si 0.5 Ge 0.5 source DL-DG-TFET is order of 5 × 10 14 that makes it a suitable contender for low power applications.</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Communication</subject><subject>Doping</subject><subject>Energy</subject><subject>Environmental Chemistry</subject><subject>Field effect transistors</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Original Paper</subject><subject>Performance enhancement</subject><subject>Photonics</subject><subject>Plasma</subject><subject>Polymer Sciences</subject><subject>Semiconductor devices</subject><subject>Transconductance</subject><subject>Transistors</subject><subject>Tunnels</subject><issn>1876-990X</issn><issn>1876-9918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9UMtKA0EQXETBEPMDngY8j84jOw9vMYlRCBhIBG_DZLf3ETazcSaL5OanOzGiN_vS3VBVXV1Jck3JLSVE3gXKBOeYMIoJJZxgcZb0qJICa03V-e9M3i6TQQgbEoszqYTuJZ8jtKxngJdt5zNAk3ZXuxLPIYQ4d-sG8MzuAa0656BBj9PVPZpAqEuHrMvRyNnmEOqAHmyAHLUOjSvrS0CLxoatRSvIKle_d4A-6n2Fpq6yLovABfii9dvjcpVcFLYJMPjp_eQ1Xhk_4fnL7Hk8muOMC77HOcmtttRSxpWkQhZKS5ZCrizN0rQQ65ykKaSUKUIFydm60OtcajUslASwlveTm5PuzrfRUNibTXw5-g-GaaqHUutURxQ7oTLfhuChMDtfb60_GErMMWxzCtvEsM132EZEEj-RQgS7Evyf9D-sLx10gRM</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Mishra, Varun</creator><creator>Verma, Yogesh Kumar</creator><creator>Gupta, Santosh Kumar</creator><creator>Rathi, Vikas</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-9264-9338</orcidid></search><sort><creationdate>20220401</creationdate><title>A SiGe-Source Doping-Less Double-Gate Tunnel FET: Design and Analysis Based on Charge Plasma Technique with Enhanced Performance</title><author>Mishra, Varun ; Verma, Yogesh Kumar ; Gupta, Santosh Kumar ; Rathi, Vikas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-d0da9a1a12387167f89725ed8a1c55f6bd055e51280160d2bf9bd7984f87eeaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Communication</topic><topic>Doping</topic><topic>Energy</topic><topic>Environmental Chemistry</topic><topic>Field effect transistors</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Original Paper</topic><topic>Performance enhancement</topic><topic>Photonics</topic><topic>Plasma</topic><topic>Polymer Sciences</topic><topic>Semiconductor devices</topic><topic>Transconductance</topic><topic>Transistors</topic><topic>Tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mishra, Varun</creatorcontrib><creatorcontrib>Verma, Yogesh Kumar</creatorcontrib><creatorcontrib>Gupta, Santosh Kumar</creatorcontrib><creatorcontrib>Rathi, Vikas</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>SILICON</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mishra, Varun</au><au>Verma, Yogesh Kumar</au><au>Gupta, Santosh Kumar</au><au>Rathi, Vikas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A SiGe-Source Doping-Less Double-Gate Tunnel FET: Design and Analysis Based on Charge Plasma Technique with Enhanced Performance</atitle><jtitle>SILICON</jtitle><stitle>Silicon</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>14</volume><issue>5</issue><spage>2275</spage><epage>2282</epage><pages>2275-2282</pages><issn>1876-990X</issn><eissn>1876-9918</eissn><abstract>In this article, a distinctive charge plasma (CP) technique is employed to design two doping-less dual gate tunnel field effect transistors (DL-DG-TFETs) with Si 0.5 Ge 0.5 and Si as source material. The CP methodology resolves the issues of random doping fluctuation and doping activation. The analog and RF performance has been investigated for both the proposed devices i.e. Si 0.5 Ge 0.5 source DL-DG-TFET and Si-source DL-DG-TFET in terms of drive current, transconductance, cut-off frequency. In addition, the linearity and distortion analysis has been carried out for both the proposed devices with respect to higher order transconductance (g m2 and g m3 ), VIP2, IMD3, and HD2. The Si 0.5 Ge 0.5 source DL-DG-TFET has better performance characteristics and reliability in compare to Si-source DL-DG-TFET owing to low energy bandgap material and higher mobility. The switching ratio obtained for Si 0.5 Ge 0.5 source DL-DG-TFET is order of 5 × 10 14 that makes it a suitable contender for low power applications.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s12633-021-01030-6</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9264-9338</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1876-990X
ispartof SILICON, 2022-04, Vol.14 (5), p.2275-2282
issn 1876-990X
1876-9918
language eng
recordid cdi_proquest_journals_2919479959
source SpringerLink Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Chemistry
Chemistry and Materials Science
Communication
Doping
Energy
Environmental Chemistry
Field effect transistors
Inorganic Chemistry
Lasers
Materials Science
Optical Devices
Optics
Original Paper
Performance enhancement
Photonics
Plasma
Polymer Sciences
Semiconductor devices
Transconductance
Transistors
Tunnels
title A SiGe-Source Doping-Less Double-Gate Tunnel FET: Design and Analysis Based on Charge Plasma Technique with Enhanced Performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A01%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20SiGe-Source%20Doping-Less%20Double-Gate%20Tunnel%20FET:%20Design%20and%20Analysis%20Based%20on%20Charge%20Plasma%20Technique%20with%20Enhanced%20Performance&rft.jtitle=SILICON&rft.au=Mishra,%20Varun&rft.date=2022-04-01&rft.volume=14&rft.issue=5&rft.spage=2275&rft.epage=2282&rft.pages=2275-2282&rft.issn=1876-990X&rft.eissn=1876-9918&rft_id=info:doi/10.1007/s12633-021-01030-6&rft_dat=%3Cproquest_cross%3E2919479959%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919479959&rft_id=info:pmid/&rfr_iscdi=true