Acrylamide in Environmental Water: A Review on Sources, Exposure, and Public Health Risks

Acrylamide and polyacrylamide (PAM) are used in diverse industrial processes, mainly the production of plastics, dyes, and paper, in the treatment of drinking water, wastewater, and sewage. Besides inorganic form, acrylamide is formed naturally in certain starchy foods that were heated to cook a tem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Exposure and health 2019-03, Vol.11 (1), p.3-12
Hauptverfasser: Tepe, Yalçın, Çebi, Ayşegül
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Acrylamide and polyacrylamide (PAM) are used in diverse industrial processes, mainly the production of plastics, dyes, and paper, in the treatment of drinking water, wastewater, and sewage. Besides inorganic form, acrylamide is formed naturally in certain starchy foods that were heated to cook a temperature above 120 °C for elongated time. Researches in rats have demonstrated that acrylamide exposure poses a risk as a neurotoxin to humans and also classified as a carcinogenic and mutagenic compound. Acrylamide may be released into drinking water supplies from its wide-ranging industrial use. Acrylamide has high risk of contamination into surface and ground water supplies due to its rapid solubility and mobility in water. Bacterial use of acrylamide as nitrogen and carbon source is the main pathway of its degradation in water. The degradation of acrylamide in water occurs about 8–12 days depending on water conditions. International Agency for Research on Cancer has declared acrylamide as 2A Group carcinogen in 1994. The major concern related to acrylamide contamination is arising from organic source that occurs especially by consumption of heated starchy food. On the other hand, as acrylamide or PAM is commonly used in different industrial processes, inorganic acrylamide contamination into environment is a big threat and has potential hazards for public health. The main objective of the present review is to summarize the routes of acrylamide contamination, degradation, release and transfer into environmental water, as well as to present integrated information on acrylamide chemistry, toxicity, and analyses, together with potential safety risks for public health. Recommended actions and further studies in needed areas are suggested.
ISSN:2451-9766
2451-9685
DOI:10.1007/s12403-017-0261-y