Analysis of Extreme Random Uncertainty in Energy and Environment Systems for Coal-Dependent City by a Copula-Based Interval Cost–Benefit Stochastic Approach
Extreme random events will interfere with the inversion analysis of energy and environment systems (EES) and make the planning schemes unreliable. A Copula-based interval cost–benefit stochastic programming (CICS) is proposed to deal with extreme random uncertainties. Taking Yulin city as an example...
Gespeichert in:
Veröffentlicht in: | Sustainability 2024-01, Vol.16 (2), p.745 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Extreme random events will interfere with the inversion analysis of energy and environment systems (EES) and make the planning schemes unreliable. A Copula-based interval cost–benefit stochastic programming (CICS) is proposed to deal with extreme random uncertainties. Taking Yulin city as an example, there are nine constraint-violation scenarios and six coal-reduction scenarios are designed. The results disclose that (i) both system cost and pollutant emission would decrease as the industrial energy supply constraint-violation level increases; (ii) when the primary and secondary energy output increases by 9% and 13%, respectively, and industrial coal supply decreases by 40%, the coal-dependent index of the system would be the lowest, and the corresponding system profitability could reach [29.3, 53.0] %; (iii) compared with the traditional chance-constrained programming, Copula-based stochastic programming can reflect more uncertain information and achieve a higher marginal net present value rate. Overall, the CICS-EES model offers a novel approach to gain insight into the tradeoff between system reliability and profitability. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su16020745 |