Investigations on NbTi superconducting racetrack coils under pulsed-current excitations
One of the key issues in the technology of superconductors is the protection against quenches. When designing a superconductor as a magnet, a coil or even current leads, the design should be made such that the superconductor withstands all operational conditions, especially those occurring rapidly,...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2024-01, Vol.2687 (8), p.82015 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One of the key issues in the technology of superconductors is the protection against quenches. When designing a superconductor as a magnet, a coil or even current leads, the design should be made such that the superconductor withstands all operational conditions, especially those occurring rapidly, as fast discharges or pulsed loads. A model for a superconducting racetrack coil based on NbTi winding is investigated under pulsed transport current conditions (zero external field) utilizing finite element analysis within the Simulia Opera platform. A pulse duration of a few milliseconds and a peak current exceeding 1 kA is yielded by discharging a capacitor into an RLC circuit that includes the superconductor coil as an element. A quench multi-physics analysis has been performed comprising both thermal and electromagnetic solutions. The transition to normal state and quench occurrence has agreed with the expected critical curve together with the load-line estimated for the existing coil geometry. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/2687/8/082015 |