Investigating of Deep Learning-based Approaches for Anomaly Detection in IoT Surveillance Systems

Anomaly detection plays a crucial role in ensuring the security and integrity of Internet of Things (IoT) surveillance systems. Nowadays, deep learning methods have gained significant popularity in anomaly detection because of their ability to learn and extract intricate features from complex data a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced computer science & applications 2023-01, Vol.14 (12)
Hauptverfasser: HUANG, Jianchang, CAI, Yakun, SUN, Tingting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Anomaly detection plays a crucial role in ensuring the security and integrity of Internet of Things (IoT) surveillance systems. Nowadays, deep learning methods have gained significant popularity in anomaly detection because of their ability to learn and extract intricate features from complex data automatically. However, despite the advancements in deep learning-based anomaly detection, several limitations and research gaps exist. These include the need for improving the interpretability of deep learning models, addressing the challenges of limited training data, handling concept drift in evolving IoT environments, and achieving real-time performance. It is crucial to conduct a comprehensive review of existing deep learning methods to address these limitations as well as identify the most accurate and effective approaches for anomaly detection in IoT surveillance systems. This review paper presents an extensive analysis of existing deep learning methods by collecting results and performance evaluations from various studies. The collected results enable the identification and comparison of the most accurate deep-learning methods for anomaly detection. Finally, the findings of this review will contribute to the development of more efficient and reliable anomaly detection techniques for enhancing the security and effectiveness of IoT surveillance systems.
ISSN:2158-107X
2156-5570
DOI:10.14569/IJACSA.2023.0141279