Management of Biosynthetic Potential of Aseptic Plants and Callus Cultures of Ocimum basilicum L. In Vitro

Callus cultures and microclones of sweet basil ( Ocimum basilicum  L.) were obtained in vitro and their growth and biochemical characteristics were studied depending on the hormonal composition of the MS medium as well as on the addition of zinc ferrate nanoparticles (NPs) to the nutrient medium. Du...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian journal of plant physiology 2023-12, Vol.70 (7), Article 170
Hauptverfasser: Cherednichenko, M. Yu, Polivanova, O. B., Khlebnikova, D. A., Slovareva, O. Yu, Kirakosyan, R. N., Kalashnikova, E. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Callus cultures and microclones of sweet basil ( Ocimum basilicum  L.) were obtained in vitro and their growth and biochemical characteristics were studied depending on the hormonal composition of the MS medium as well as on the addition of zinc ferrate nanoparticles (NPs) to the nutrient medium. During clonal micropropagation of samples, the advantage of various options for the composition of nutrient media was noted: adding NAA to the MS medium for the cultivars Lyubimchik and Vasilisk, IBA for the cultivar Fioletovy barkhat and the species sample from Germany, and IAA for species samples from Poland and Italy. It should be noted that plants of the purple-leaved cultivar Fioletovy barkhat preferred MS medium containing mineral salts at a concentration of ½ normal. The results of the study confirmed the hypothesis put forward by various authors about the ability of microplants and basil callus cells to accumulate secondary metabolites as well as the possibility of controlling this process with the help of biological (mineral and hormonal composition of the nutrient medium) and physical (NP) elicitors. It was shown that the presence of zinc ferrate NPs in the MS medium contributed to the formation of callus tissue of different types of density and color. The addition of 25 μg/L NPs to the MS medium significantly increased the fresh biomass of callus tissue compared to other experimental options. In this variant, the growth index of callus tissue was the highest and amounted to 3.55. When the concentration of NPs increased to 50 μg/L, a decrease in the growth index was noted, which indicates their inhibitory effect on the proliferative activity of dedifferentiated cells. A comprehensive analysis of phenolic compounds was carried out in the resulting cell cultures. It was revealed that the accumulation of the total phenolics and flavonoids does not depend on the concentration of NPs in the MS medium.
ISSN:1021-4437
1608-3407
DOI:10.1134/S1021443723603130