Greenhouse gas emissions from different pig manure management techniques: a critical analysis

Manure management is the primary source of greenhouse gas (GHG) emissions from pig farming, which in turn accounts for 18% of the total global GHG emissions from the livestock industry. In this review, GHG emissions (N20 and CH4 emissions in particular) from individual pig manure (PGM) management pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of environmental science & engineering 2017-06, Vol.11 (3), p.3-18, Article 11
Hauptverfasser: Dennehy, Conor, Lawlor, Peadar G., Jiang, Yan, Gardiner, Gillian E., Xie, Sihuang, Nghiem, Long D, Zhan, Xinmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Manure management is the primary source of greenhouse gas (GHG) emissions from pig farming, which in turn accounts for 18% of the total global GHG emissions from the livestock industry. In this review, GHG emissions (N20 and CH4 emissions in particular) from individual pig manure (PGM) management practices (European practises in particular) are systematically analyzed and discussed. These manure management practices include manure storage, land application, solid/liquid separation, anaerobic digestion, composting and aerobic wastewater treatment. The potential reduction in net GHG emissions by changing and optimising these techniques is assessed. This review also identifies key research gaps in the literature including the effect of straw covering of liquid PGM storages, the effect of solid/liquid separation, and the effect of dry anaerobic digestion on net GHG emissions from PGM management. In addition to identifying these research gaps, several recommendations including the need to standardize units used to report GHG emissions, to account ~br indirect N20 emissions, and to include a broader research scope by conducting detailed life cycle assessment are also discussed. Overall, anaerobic digestion and compositing to liquid and solid fractions are best PGM management practices with respect to their high GHG mitigation potential.
ISSN:2095-2201
2095-221X
DOI:10.1007/s11783-017-0942-6