Recovery of rare and precious metals from urban mines —— A review
Urban mining is essential for continued natural resource extraction. The recovery of rare and precious metals (RPMs) from urban mines has attracted increasing attention from both academic and industrial sectors, because of the broad application and high price of RPMs, and their low content in natura...
Gespeichert in:
Veröffentlicht in: | Frontiers of environmental science & engineering 2017-10, Vol.11 (5), p.3-19, Article 1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Urban mining is essential for continued natural resource extraction. The recovery of rare and precious metals (RPMs) from urban mines has attracted increasing attention from both academic and industrial sectors, because of the broad application and high price of RPMs, and their low content in natural ores. This study summarizes the distribution characteristics of various RPMs in urban mines, and the advantages and shortcomings of various technologies for RPM recovery from urban mines, including both conventional (pyrometallurgical, hydrometallurgical, and biometallurgical processing), and emerging (electrochemical, supereritieal fluid, mechanochemical, and ionic liquids processing) technologies. Mechanical/physical technologies are commonly employed to separate RPMs from nonmetallic components in a pre-treatment process. A pyrometallurgical process is often used tbr RPM recovery, although the expensive equipment required has limited its use in small and medium-sized enterprises. Hydrometallurgical processing is effective and easy to operate, with high selectivity of target metals and high recovery efficiency of RPMs, compared to pyrometallurgy. Biometallurgy, though, has shown the most promise for leaching RPMs from urban mines, because of its low cost and environmental friendliness. Newly developed technologies electrochemical, supercritical fluid, ionic liquid, and mechanochemical have offered new choices and achieved some success in laboratory experiments, especially as efficient and environmentally friendly methods of recycling RPMs. With continuing advances in science and technology, more technologies will no doubt be developed in this field, and be able to contribute to the sustainability of RPM mining. |
---|---|
ISSN: | 2095-2201 2095-221X |
DOI: | 10.1007/s11783-017-0963-1 |