A reliable and energy-efficient storage system with erasure coding cache

In modern energy-saving replication storage systems, a primary group of disks is always powered up to serve incoming requests while other disks are often spun down to save energy during slack periods. However, since new writes cannot be immediately synchronized into all disks, system reliability is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of information technology & electronic engineering 2017-09, Vol.18 (9), p.1370-1384
Hauptverfasser: Wan, Ji-guang, Li, Da-ping, Qu, Xiao-yang, Yin, Chao, Wang, Jun, Xie, Chang-sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In modern energy-saving replication storage systems, a primary group of disks is always powered up to serve incoming requests while other disks are often spun down to save energy during slack periods. However, since new writes cannot be immediately synchronized into all disks, system reliability is degraded. In this paper, we develop a high-reliability and energy-efficient replication storage system, named RERAID, based on RAID10. RERAID employs part of the free space in the primary disk group and uses erasure coding to construct a code cache at the front end to absorb new writes. Since code cache supports failure recovery of two or more disks by using erasure coding, RERAID guarantees a reliability comparable with that of the RAID10 storage system. In addition, we develop an algorithm, called erasure coding write (ECW), to buffer many small random writes into a few large writes, which are then written to the code cache in a parallel fashion sequentially to improve the write performance. Experimental results show that RERAID significantly improves write performance and saves more energy than existing solutions.
ISSN:2095-9184
2095-9230
DOI:10.1631/FITEE.1600972