A new variable-mode control strategy for LLC resonant converters operating in a wide input voltage range
This paper proposes a new variable-mode control strategy that is applicable for LLC resonant converters operating in a wide input voltage range. This control strategy incorporates advantages from full-bridge LLC resonant converters, half-bridge LLC resonant converters, variable-frequency control mod...
Gespeichert in:
Veröffentlicht in: | Frontiers of information technology & electronic engineering 2017-03, Vol.18 (3), p.410-422 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a new variable-mode control strategy that is applicable for LLC resonant converters operating in a wide input voltage range. This control strategy incorporates advantages from full-bridge LLC resonant converters, half-bridge LLC resonant converters, variable-frequency control mode, and phase-shift control mode. Under this control strategy, different input voltages determine the different operating modes of the circuit. When the input voltage is very low, it works in a full-bridge circuit and variable frequency mode(FB_VF mode). When the input voltage rises to a certain level, it shifts to a full-bridge circuit and phase-shifting control mode(FB_PS mode). When the input voltage further increases, it shifts into a half-bridge circuit and variable frequency mode(HB_VF mode). Such shifts are enabled by the digital signal processor(DSP), which means that no auxiliary circuit is needed, just a modification of the software. From light load to heavy load, the primary MOSFET for the LLC resonant converter can realize zero-voltage switching(ZVS), and the secondary rectifier diode can realize zero-current switching(ZCS). With an LLC resonant converter prototype with a 300 W rated power and a 450 V output voltage, as well as a resonant converter with 20–120 V input voltage, the experiments verified the proposed control strategy. Experimental results showed that under this control strategy, the maximum converter efficiency reaches 95.7% and the range of the input voltage expands threefold. |
---|---|
ISSN: | 2095-9184 2095-9230 |
DOI: | 10.1631/FITEE.1600029 |