An improved fruit fly optimization algorithm for solving traveling salesman problem

The traveling salesman problem(TSP), a typical non-deterministic polynomial(NP) hard problem, has been used in many engineering applications. As a new swarm-intelligence optimization algorithm, the fruit fly optimization algorithm(FOA) is used to solve TSP, since it has the advantages of being easy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of information technology & electronic engineering 2017-10, Vol.18 (10), p.1525-1533
Hauptverfasser: Huang, Lan, Wang, Gui-chao, Bai, Tian, Wang, Zhe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1533
container_issue 10
container_start_page 1525
container_title Frontiers of information technology & electronic engineering
container_volume 18
creator Huang, Lan
Wang, Gui-chao
Bai, Tian
Wang, Zhe
description The traveling salesman problem(TSP), a typical non-deterministic polynomial(NP) hard problem, has been used in many engineering applications. As a new swarm-intelligence optimization algorithm, the fruit fly optimization algorithm(FOA) is used to solve TSP, since it has the advantages of being easy to understand and having a simple implementation. However, it has problems, including a slow convergence rate for the algorithm, easily falling into the local optimum, and an insufficient optimization precision. To address TSP effectively, three improvements are proposed in this paper to improve FOA. First, the vision search process is reinforced in the foraging behavior of fruit flies to improve the convergence rate of FOA. Second, an elimination mechanism is added to FOA to increase the diversity. Third, a reverse operator and a multiplication operator are proposed. They are performed on the solution sequence in the fruit fly’s smell search and vision search processes, respectively. In the experiment, 10 benchmarks selected from TSPLIB are tested. The results show that the improved FOA outperforms other alternatives in terms of the convergence rate and precision.
doi_str_mv 10.1631/FITEE.1601364
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918724348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>74908583504849554948484855</cqvip_id><sourcerecordid>2918724348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-709e6d8a2f0504c9263d312dd3eab80b44307d18d79b2b12e21c93cfdaf7cda23</originalsourceid><addsrcrecordid>eNp1kL1vwjAQxa2qlYooY3dLnUP9lcQeEYIWCalD6Rw5sR2MkhjsgET_-pqGtlN1w73h3fvpHgCPGE1xRvHzcrVZLKJEmGbsBowIEmkiCEW3Pxpzdg8mIewQQjjDIhd8BN5nHbTt3ruTVtD4o-2hac7Q7Xvb2k_ZW9dB2dTO237bQuM8DK452a6GvZcn3VxUkI0OrexgjCkb3T6AOyOboCfXPQYfy8Vm_pqs315W89k6qSjjfZIjoTPFJTEoRawSJKOKYqIU1bLkqGSMolxhrnJRkhITTXAlaGWUNHmlJKFj8DTkRu7hqENf7NzRdxFZkPhtTljkRFcyuCrvQvDaFHtvW-nPBUbFpbriu7riWl30Twd_iL6u1v4v9b8DegVsXVcf4s0vIWcC8ZTT-B9nIk2ZiDtOmtIvzAV_1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918724348</pqid></control><display><type>article</type><title>An improved fruit fly optimization algorithm for solving traveling salesman problem</title><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Huang, Lan ; Wang, Gui-chao ; Bai, Tian ; Wang, Zhe</creator><creatorcontrib>Huang, Lan ; Wang, Gui-chao ; Bai, Tian ; Wang, Zhe</creatorcontrib><description>The traveling salesman problem(TSP), a typical non-deterministic polynomial(NP) hard problem, has been used in many engineering applications. As a new swarm-intelligence optimization algorithm, the fruit fly optimization algorithm(FOA) is used to solve TSP, since it has the advantages of being easy to understand and having a simple implementation. However, it has problems, including a slow convergence rate for the algorithm, easily falling into the local optimum, and an insufficient optimization precision. To address TSP effectively, three improvements are proposed in this paper to improve FOA. First, the vision search process is reinforced in the foraging behavior of fruit flies to improve the convergence rate of FOA. Second, an elimination mechanism is added to FOA to increase the diversity. Third, a reverse operator and a multiplication operator are proposed. They are performed on the solution sequence in the fruit fly’s smell search and vision search processes, respectively. In the experiment, 10 benchmarks selected from TSPLIB are tested. The results show that the improved FOA outperforms other alternatives in terms of the convergence rate and precision.</description><identifier>ISSN: 2095-9184</identifier><identifier>EISSN: 2095-9230</identifier><identifier>DOI: 10.1631/FITEE.1601364</identifier><language>eng</language><publisher>Hangzhou: Zhejiang University Press</publisher><subject>Algorithms ; Communications Engineering ; Computer Hardware ; Computer Science ; Computer Systems Organization and Communication Networks ; Convergence ; Electrical Engineering ; Electronics and Microelectronics ; Instrumentation ; Networks ; Optimization ; Optimization algorithms ; Polynomials ; Search process ; Swarm intelligence ; Traveling salesman problem</subject><ispartof>Frontiers of information technology &amp; electronic engineering, 2017-10, Vol.18 (10), p.1525-1533</ispartof><rights>Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2017</rights><rights>Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-709e6d8a2f0504c9263d312dd3eab80b44307d18d79b2b12e21c93cfdaf7cda23</citedby><cites>FETCH-LOGICAL-c348t-709e6d8a2f0504c9263d312dd3eab80b44307d18d79b2b12e21c93cfdaf7cda23</cites><orcidid>0000-0003-3223-3777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/89589A/89589A.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1631/FITEE.1601364$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918724348?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72240</link.rule.ids></links><search><creatorcontrib>Huang, Lan</creatorcontrib><creatorcontrib>Wang, Gui-chao</creatorcontrib><creatorcontrib>Bai, Tian</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><title>An improved fruit fly optimization algorithm for solving traveling salesman problem</title><title>Frontiers of information technology &amp; electronic engineering</title><addtitle>Frontiers Inf Technol Electronic Eng</addtitle><addtitle>Frontiers of Information Technology &amp; Electronic Engineering</addtitle><description>The traveling salesman problem(TSP), a typical non-deterministic polynomial(NP) hard problem, has been used in many engineering applications. As a new swarm-intelligence optimization algorithm, the fruit fly optimization algorithm(FOA) is used to solve TSP, since it has the advantages of being easy to understand and having a simple implementation. However, it has problems, including a slow convergence rate for the algorithm, easily falling into the local optimum, and an insufficient optimization precision. To address TSP effectively, three improvements are proposed in this paper to improve FOA. First, the vision search process is reinforced in the foraging behavior of fruit flies to improve the convergence rate of FOA. Second, an elimination mechanism is added to FOA to increase the diversity. Third, a reverse operator and a multiplication operator are proposed. They are performed on the solution sequence in the fruit fly’s smell search and vision search processes, respectively. In the experiment, 10 benchmarks selected from TSPLIB are tested. The results show that the improved FOA outperforms other alternatives in terms of the convergence rate and precision.</description><subject>Algorithms</subject><subject>Communications Engineering</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Convergence</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Instrumentation</subject><subject>Networks</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Polynomials</subject><subject>Search process</subject><subject>Swarm intelligence</subject><subject>Traveling salesman problem</subject><issn>2095-9184</issn><issn>2095-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kL1vwjAQxa2qlYooY3dLnUP9lcQeEYIWCalD6Rw5sR2MkhjsgET_-pqGtlN1w73h3fvpHgCPGE1xRvHzcrVZLKJEmGbsBowIEmkiCEW3Pxpzdg8mIewQQjjDIhd8BN5nHbTt3ruTVtD4o-2hac7Q7Xvb2k_ZW9dB2dTO237bQuM8DK452a6GvZcn3VxUkI0OrexgjCkb3T6AOyOboCfXPQYfy8Vm_pqs315W89k6qSjjfZIjoTPFJTEoRawSJKOKYqIU1bLkqGSMolxhrnJRkhITTXAlaGWUNHmlJKFj8DTkRu7hqENf7NzRdxFZkPhtTljkRFcyuCrvQvDaFHtvW-nPBUbFpbriu7riWl30Twd_iL6u1v4v9b8DegVsXVcf4s0vIWcC8ZTT-B9nIk2ZiDtOmtIvzAV_1g</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Huang, Lan</creator><creator>Wang, Gui-chao</creator><creator>Bai, Tian</creator><creator>Wang, Zhe</creator><general>Zhejiang University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-3223-3777</orcidid></search><sort><creationdate>20171001</creationdate><title>An improved fruit fly optimization algorithm for solving traveling salesman problem</title><author>Huang, Lan ; Wang, Gui-chao ; Bai, Tian ; Wang, Zhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-709e6d8a2f0504c9263d312dd3eab80b44307d18d79b2b12e21c93cfdaf7cda23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Communications Engineering</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Convergence</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Instrumentation</topic><topic>Networks</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Polynomials</topic><topic>Search process</topic><topic>Swarm intelligence</topic><topic>Traveling salesman problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Lan</creatorcontrib><creatorcontrib>Wang, Gui-chao</creatorcontrib><creatorcontrib>Bai, Tian</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Frontiers of information technology &amp; electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Lan</au><au>Wang, Gui-chao</au><au>Bai, Tian</au><au>Wang, Zhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved fruit fly optimization algorithm for solving traveling salesman problem</atitle><jtitle>Frontiers of information technology &amp; electronic engineering</jtitle><stitle>Frontiers Inf Technol Electronic Eng</stitle><addtitle>Frontiers of Information Technology &amp; Electronic Engineering</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>18</volume><issue>10</issue><spage>1525</spage><epage>1533</epage><pages>1525-1533</pages><issn>2095-9184</issn><eissn>2095-9230</eissn><abstract>The traveling salesman problem(TSP), a typical non-deterministic polynomial(NP) hard problem, has been used in many engineering applications. As a new swarm-intelligence optimization algorithm, the fruit fly optimization algorithm(FOA) is used to solve TSP, since it has the advantages of being easy to understand and having a simple implementation. However, it has problems, including a slow convergence rate for the algorithm, easily falling into the local optimum, and an insufficient optimization precision. To address TSP effectively, three improvements are proposed in this paper to improve FOA. First, the vision search process is reinforced in the foraging behavior of fruit flies to improve the convergence rate of FOA. Second, an elimination mechanism is added to FOA to increase the diversity. Third, a reverse operator and a multiplication operator are proposed. They are performed on the solution sequence in the fruit fly’s smell search and vision search processes, respectively. In the experiment, 10 benchmarks selected from TSPLIB are tested. The results show that the improved FOA outperforms other alternatives in terms of the convergence rate and precision.</abstract><cop>Hangzhou</cop><pub>Zhejiang University Press</pub><doi>10.1631/FITEE.1601364</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3223-3777</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2095-9184
ispartof Frontiers of information technology & electronic engineering, 2017-10, Vol.18 (10), p.1525-1533
issn 2095-9184
2095-9230
language eng
recordid cdi_proquest_journals_2918724348
source ProQuest Central UK/Ireland; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Algorithms
Communications Engineering
Computer Hardware
Computer Science
Computer Systems Organization and Communication Networks
Convergence
Electrical Engineering
Electronics and Microelectronics
Instrumentation
Networks
Optimization
Optimization algorithms
Polynomials
Search process
Swarm intelligence
Traveling salesman problem
title An improved fruit fly optimization algorithm for solving traveling salesman problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A41%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20fruit%20fly%20optimization%20algorithm%20for%20solving%20traveling%20salesman%20problem&rft.jtitle=Frontiers%20of%20information%20technology%20&%20electronic%20engineering&rft.au=Huang,%20Lan&rft.date=2017-10-01&rft.volume=18&rft.issue=10&rft.spage=1525&rft.epage=1533&rft.pages=1525-1533&rft.issn=2095-9184&rft.eissn=2095-9230&rft_id=info:doi/10.1631/FITEE.1601364&rft_dat=%3Cproquest_cross%3E2918724348%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918724348&rft_id=info:pmid/&rft_cqvip_id=74908583504849554948484855&rfr_iscdi=true