An improved fruit fly optimization algorithm for solving traveling salesman problem
The traveling salesman problem(TSP), a typical non-deterministic polynomial(NP) hard problem, has been used in many engineering applications. As a new swarm-intelligence optimization algorithm, the fruit fly optimization algorithm(FOA) is used to solve TSP, since it has the advantages of being easy...
Gespeichert in:
Veröffentlicht in: | Frontiers of information technology & electronic engineering 2017-10, Vol.18 (10), p.1525-1533 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1533 |
---|---|
container_issue | 10 |
container_start_page | 1525 |
container_title | Frontiers of information technology & electronic engineering |
container_volume | 18 |
creator | Huang, Lan Wang, Gui-chao Bai, Tian Wang, Zhe |
description | The traveling salesman problem(TSP), a typical non-deterministic polynomial(NP) hard problem, has been used in many engineering applications. As a new swarm-intelligence optimization algorithm, the fruit fly optimization algorithm(FOA) is used to solve TSP, since it has the advantages of being easy to understand and having a simple implementation. However, it has problems, including a slow convergence rate for the algorithm, easily falling into the local optimum, and an insufficient optimization precision. To address TSP effectively, three improvements are proposed in this paper to improve FOA. First, the vision search process is reinforced in the foraging behavior of fruit flies to improve the convergence rate of FOA. Second, an elimination mechanism is added to FOA to increase the diversity. Third, a reverse operator and a multiplication operator are proposed. They are performed on the solution sequence in the fruit fly’s smell search and vision search processes, respectively. In the experiment, 10 benchmarks selected from TSPLIB are tested. The results show that the improved FOA outperforms other alternatives in terms of the convergence rate and precision. |
doi_str_mv | 10.1631/FITEE.1601364 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918724348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>74908583504849554948484855</cqvip_id><sourcerecordid>2918724348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-709e6d8a2f0504c9263d312dd3eab80b44307d18d79b2b12e21c93cfdaf7cda23</originalsourceid><addsrcrecordid>eNp1kL1vwjAQxa2qlYooY3dLnUP9lcQeEYIWCalD6Rw5sR2MkhjsgET_-pqGtlN1w73h3fvpHgCPGE1xRvHzcrVZLKJEmGbsBowIEmkiCEW3Pxpzdg8mIewQQjjDIhd8BN5nHbTt3ruTVtD4o-2hac7Q7Xvb2k_ZW9dB2dTO237bQuM8DK452a6GvZcn3VxUkI0OrexgjCkb3T6AOyOboCfXPQYfy8Vm_pqs315W89k6qSjjfZIjoTPFJTEoRawSJKOKYqIU1bLkqGSMolxhrnJRkhITTXAlaGWUNHmlJKFj8DTkRu7hqENf7NzRdxFZkPhtTljkRFcyuCrvQvDaFHtvW-nPBUbFpbriu7riWl30Twd_iL6u1v4v9b8DegVsXVcf4s0vIWcC8ZTT-B9nIk2ZiDtOmtIvzAV_1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918724348</pqid></control><display><type>article</type><title>An improved fruit fly optimization algorithm for solving traveling salesman problem</title><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Huang, Lan ; Wang, Gui-chao ; Bai, Tian ; Wang, Zhe</creator><creatorcontrib>Huang, Lan ; Wang, Gui-chao ; Bai, Tian ; Wang, Zhe</creatorcontrib><description>The traveling salesman problem(TSP), a typical non-deterministic polynomial(NP) hard problem, has been used in many engineering applications. As a new swarm-intelligence optimization algorithm, the fruit fly optimization algorithm(FOA) is used to solve TSP, since it has the advantages of being easy to understand and having a simple implementation. However, it has problems, including a slow convergence rate for the algorithm, easily falling into the local optimum, and an insufficient optimization precision. To address TSP effectively, three improvements are proposed in this paper to improve FOA. First, the vision search process is reinforced in the foraging behavior of fruit flies to improve the convergence rate of FOA. Second, an elimination mechanism is added to FOA to increase the diversity. Third, a reverse operator and a multiplication operator are proposed. They are performed on the solution sequence in the fruit fly’s smell search and vision search processes, respectively. In the experiment, 10 benchmarks selected from TSPLIB are tested. The results show that the improved FOA outperforms other alternatives in terms of the convergence rate and precision.</description><identifier>ISSN: 2095-9184</identifier><identifier>EISSN: 2095-9230</identifier><identifier>DOI: 10.1631/FITEE.1601364</identifier><language>eng</language><publisher>Hangzhou: Zhejiang University Press</publisher><subject>Algorithms ; Communications Engineering ; Computer Hardware ; Computer Science ; Computer Systems Organization and Communication Networks ; Convergence ; Electrical Engineering ; Electronics and Microelectronics ; Instrumentation ; Networks ; Optimization ; Optimization algorithms ; Polynomials ; Search process ; Swarm intelligence ; Traveling salesman problem</subject><ispartof>Frontiers of information technology & electronic engineering, 2017-10, Vol.18 (10), p.1525-1533</ispartof><rights>Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2017</rights><rights>Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-709e6d8a2f0504c9263d312dd3eab80b44307d18d79b2b12e21c93cfdaf7cda23</citedby><cites>FETCH-LOGICAL-c348t-709e6d8a2f0504c9263d312dd3eab80b44307d18d79b2b12e21c93cfdaf7cda23</cites><orcidid>0000-0003-3223-3777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/89589A/89589A.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1631/FITEE.1601364$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918724348?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72240</link.rule.ids></links><search><creatorcontrib>Huang, Lan</creatorcontrib><creatorcontrib>Wang, Gui-chao</creatorcontrib><creatorcontrib>Bai, Tian</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><title>An improved fruit fly optimization algorithm for solving traveling salesman problem</title><title>Frontiers of information technology & electronic engineering</title><addtitle>Frontiers Inf Technol Electronic Eng</addtitle><addtitle>Frontiers of Information Technology & Electronic Engineering</addtitle><description>The traveling salesman problem(TSP), a typical non-deterministic polynomial(NP) hard problem, has been used in many engineering applications. As a new swarm-intelligence optimization algorithm, the fruit fly optimization algorithm(FOA) is used to solve TSP, since it has the advantages of being easy to understand and having a simple implementation. However, it has problems, including a slow convergence rate for the algorithm, easily falling into the local optimum, and an insufficient optimization precision. To address TSP effectively, three improvements are proposed in this paper to improve FOA. First, the vision search process is reinforced in the foraging behavior of fruit flies to improve the convergence rate of FOA. Second, an elimination mechanism is added to FOA to increase the diversity. Third, a reverse operator and a multiplication operator are proposed. They are performed on the solution sequence in the fruit fly’s smell search and vision search processes, respectively. In the experiment, 10 benchmarks selected from TSPLIB are tested. The results show that the improved FOA outperforms other alternatives in terms of the convergence rate and precision.</description><subject>Algorithms</subject><subject>Communications Engineering</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Convergence</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Instrumentation</subject><subject>Networks</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Polynomials</subject><subject>Search process</subject><subject>Swarm intelligence</subject><subject>Traveling salesman problem</subject><issn>2095-9184</issn><issn>2095-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kL1vwjAQxa2qlYooY3dLnUP9lcQeEYIWCalD6Rw5sR2MkhjsgET_-pqGtlN1w73h3fvpHgCPGE1xRvHzcrVZLKJEmGbsBowIEmkiCEW3Pxpzdg8mIewQQjjDIhd8BN5nHbTt3ruTVtD4o-2hac7Q7Xvb2k_ZW9dB2dTO237bQuM8DK452a6GvZcn3VxUkI0OrexgjCkb3T6AOyOboCfXPQYfy8Vm_pqs315W89k6qSjjfZIjoTPFJTEoRawSJKOKYqIU1bLkqGSMolxhrnJRkhITTXAlaGWUNHmlJKFj8DTkRu7hqENf7NzRdxFZkPhtTljkRFcyuCrvQvDaFHtvW-nPBUbFpbriu7riWl30Twd_iL6u1v4v9b8DegVsXVcf4s0vIWcC8ZTT-B9nIk2ZiDtOmtIvzAV_1g</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Huang, Lan</creator><creator>Wang, Gui-chao</creator><creator>Bai, Tian</creator><creator>Wang, Zhe</creator><general>Zhejiang University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-3223-3777</orcidid></search><sort><creationdate>20171001</creationdate><title>An improved fruit fly optimization algorithm for solving traveling salesman problem</title><author>Huang, Lan ; Wang, Gui-chao ; Bai, Tian ; Wang, Zhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-709e6d8a2f0504c9263d312dd3eab80b44307d18d79b2b12e21c93cfdaf7cda23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Communications Engineering</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Convergence</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Instrumentation</topic><topic>Networks</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Polynomials</topic><topic>Search process</topic><topic>Swarm intelligence</topic><topic>Traveling salesman problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Lan</creatorcontrib><creatorcontrib>Wang, Gui-chao</creatorcontrib><creatorcontrib>Bai, Tian</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Frontiers of information technology & electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Lan</au><au>Wang, Gui-chao</au><au>Bai, Tian</au><au>Wang, Zhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved fruit fly optimization algorithm for solving traveling salesman problem</atitle><jtitle>Frontiers of information technology & electronic engineering</jtitle><stitle>Frontiers Inf Technol Electronic Eng</stitle><addtitle>Frontiers of Information Technology & Electronic Engineering</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>18</volume><issue>10</issue><spage>1525</spage><epage>1533</epage><pages>1525-1533</pages><issn>2095-9184</issn><eissn>2095-9230</eissn><abstract>The traveling salesman problem(TSP), a typical non-deterministic polynomial(NP) hard problem, has been used in many engineering applications. As a new swarm-intelligence optimization algorithm, the fruit fly optimization algorithm(FOA) is used to solve TSP, since it has the advantages of being easy to understand and having a simple implementation. However, it has problems, including a slow convergence rate for the algorithm, easily falling into the local optimum, and an insufficient optimization precision. To address TSP effectively, three improvements are proposed in this paper to improve FOA. First, the vision search process is reinforced in the foraging behavior of fruit flies to improve the convergence rate of FOA. Second, an elimination mechanism is added to FOA to increase the diversity. Third, a reverse operator and a multiplication operator are proposed. They are performed on the solution sequence in the fruit fly’s smell search and vision search processes, respectively. In the experiment, 10 benchmarks selected from TSPLIB are tested. The results show that the improved FOA outperforms other alternatives in terms of the convergence rate and precision.</abstract><cop>Hangzhou</cop><pub>Zhejiang University Press</pub><doi>10.1631/FITEE.1601364</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3223-3777</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-9184 |
ispartof | Frontiers of information technology & electronic engineering, 2017-10, Vol.18 (10), p.1525-1533 |
issn | 2095-9184 2095-9230 |
language | eng |
recordid | cdi_proquest_journals_2918724348 |
source | ProQuest Central UK/Ireland; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Algorithms Communications Engineering Computer Hardware Computer Science Computer Systems Organization and Communication Networks Convergence Electrical Engineering Electronics and Microelectronics Instrumentation Networks Optimization Optimization algorithms Polynomials Search process Swarm intelligence Traveling salesman problem |
title | An improved fruit fly optimization algorithm for solving traveling salesman problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A41%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20fruit%20fly%20optimization%20algorithm%20for%20solving%20traveling%20salesman%20problem&rft.jtitle=Frontiers%20of%20information%20technology%20&%20electronic%20engineering&rft.au=Huang,%20Lan&rft.date=2017-10-01&rft.volume=18&rft.issue=10&rft.spage=1525&rft.epage=1533&rft.pages=1525-1533&rft.issn=2095-9184&rft.eissn=2095-9230&rft_id=info:doi/10.1631/FITEE.1601364&rft_dat=%3Cproquest_cross%3E2918724348%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918724348&rft_id=info:pmid/&rft_cqvip_id=74908583504849554948484855&rfr_iscdi=true |