An improved fruit fly optimization algorithm for solving traveling salesman problem

The traveling salesman problem(TSP), a typical non-deterministic polynomial(NP) hard problem, has been used in many engineering applications. As a new swarm-intelligence optimization algorithm, the fruit fly optimization algorithm(FOA) is used to solve TSP, since it has the advantages of being easy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of information technology & electronic engineering 2017-10, Vol.18 (10), p.1525-1533
Hauptverfasser: Huang, Lan, Wang, Gui-chao, Bai, Tian, Wang, Zhe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The traveling salesman problem(TSP), a typical non-deterministic polynomial(NP) hard problem, has been used in many engineering applications. As a new swarm-intelligence optimization algorithm, the fruit fly optimization algorithm(FOA) is used to solve TSP, since it has the advantages of being easy to understand and having a simple implementation. However, it has problems, including a slow convergence rate for the algorithm, easily falling into the local optimum, and an insufficient optimization precision. To address TSP effectively, three improvements are proposed in this paper to improve FOA. First, the vision search process is reinforced in the foraging behavior of fruit flies to improve the convergence rate of FOA. Second, an elimination mechanism is added to FOA to increase the diversity. Third, a reverse operator and a multiplication operator are proposed. They are performed on the solution sequence in the fruit fly’s smell search and vision search processes, respectively. In the experiment, 10 benchmarks selected from TSPLIB are tested. The results show that the improved FOA outperforms other alternatives in terms of the convergence rate and precision.
ISSN:2095-9184
2095-9230
DOI:10.1631/FITEE.1601364