Topic modeling for large-scale text data

This paper develops a novel online algorithm, namely moving average stochastic variational inference (MASVI), which applies the results obtained by previous iterations to smooth out noisy natural gradients. We analyze the convergence property of the proposed algorithm and conduct a set of experiment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of information technology & electronic engineering 2015-06, Vol.16 (6), p.457-465
Hauptverfasser: Li, Xi-ming, Ouyang, Ji-hong, Lu, You
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 465
container_issue 6
container_start_page 457
container_title Frontiers of information technology & electronic engineering
container_volume 16
creator Li, Xi-ming
Ouyang, Ji-hong
Lu, You
description This paper develops a novel online algorithm, namely moving average stochastic variational inference (MASVI), which applies the results obtained by previous iterations to smooth out noisy natural gradients. We analyze the convergence property of the proposed algorithm and conduct a set of experiments on two large-scale collections that contain millions of documents. Experimental results indicate that in contrast to algorithms named 'stochastic variational inference' and 'SGRLD', our algorithm achieves a faster convergence rate and better performance.
doi_str_mv 10.1631/FITEE.1400352
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918723644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>665384013</cqvip_id><sourcerecordid>2918723644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-a13b9bca147dc3072dc5b379793e279c951a50f848d6241d168ff81cef81bf143</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EElXpyB7BwpLgsx3HHlHVQqVKLGW2HMcOrdK4tVMJ_j0uLTCx3N3wvfd0D6FbwAVwCo_zxWo2K4BhTEtygUYEyzKXhOLLnxsEu0aTGDcYY-AgKylG6GHld2uTbX1ju3XfZs6HrNOhtXk0urPZYD-GrNGDvkFXTnfRTs57jN7ms9X0JV--Pi-mT8vcUApDroHWsjYaWNUYiivSmLKmVQqjllTSyBJ0iZ1gouGEQQNcOCfA2DRqB4yO0f3Jdxf8_mDjoDb-EPoUqUh6oSKUsyOVnygTfIzBOrUL660OnwqwOvahvvtQ5z4SX5z4mLi-teHP9T_B3Tng3fftPml-EzgvqWAYKP0CNEtqNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918723644</pqid></control><display><type>article</type><title>Topic modeling for large-scale text data</title><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Li, Xi-ming ; Ouyang, Ji-hong ; Lu, You</creator><creatorcontrib>Li, Xi-ming ; Ouyang, Ji-hong ; Lu, You</creatorcontrib><description>This paper develops a novel online algorithm, namely moving average stochastic variational inference (MASVI), which applies the results obtained by previous iterations to smooth out noisy natural gradients. We analyze the convergence property of the proposed algorithm and conduct a set of experiments on two large-scale collections that contain millions of documents. Experimental results indicate that in contrast to algorithms named 'stochastic variational inference' and 'SGRLD', our algorithm achieves a faster convergence rate and better performance.</description><identifier>ISSN: 2095-9184</identifier><identifier>EISSN: 2095-9230</identifier><identifier>DOI: 10.1631/FITEE.1400352</identifier><language>eng</language><publisher>Hangzhou: Zhejiang University Press</publisher><subject>Algorithms ; Communications Engineering ; Computer Hardware ; Computer Science ; Computer Systems Organization and Communication Networks ; Convergence ; Electrical Engineering ; Electronics and Microelectronics ; Inference ; Instrumentation ; Networks</subject><ispartof>Frontiers of information technology &amp; electronic engineering, 2015-06, Vol.16 (6), p.457-465</ispartof><rights>Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2015</rights><rights>Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-a13b9bca147dc3072dc5b379793e279c951a50f848d6241d168ff81cef81bf143</citedby><cites>FETCH-LOGICAL-c331t-a13b9bca147dc3072dc5b379793e279c951a50f848d6241d168ff81cef81bf143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/89589A/89589A.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1631/FITEE.1400352$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918723644?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,21369,27905,27906,33725,41469,42538,43786,51300,64364,64368,72218</link.rule.ids></links><search><creatorcontrib>Li, Xi-ming</creatorcontrib><creatorcontrib>Ouyang, Ji-hong</creatorcontrib><creatorcontrib>Lu, You</creatorcontrib><title>Topic modeling for large-scale text data</title><title>Frontiers of information technology &amp; electronic engineering</title><addtitle>Frontiers Inf Technol Electronic Eng</addtitle><addtitle>Frontiers of Information Technology & Electronic Engineering</addtitle><description>This paper develops a novel online algorithm, namely moving average stochastic variational inference (MASVI), which applies the results obtained by previous iterations to smooth out noisy natural gradients. We analyze the convergence property of the proposed algorithm and conduct a set of experiments on two large-scale collections that contain millions of documents. Experimental results indicate that in contrast to algorithms named 'stochastic variational inference' and 'SGRLD', our algorithm achieves a faster convergence rate and better performance.</description><subject>Algorithms</subject><subject>Communications Engineering</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Convergence</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Inference</subject><subject>Instrumentation</subject><subject>Networks</subject><issn>2095-9184</issn><issn>2095-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kDFPwzAQhS0EElXpyB7BwpLgsx3HHlHVQqVKLGW2HMcOrdK4tVMJ_j0uLTCx3N3wvfd0D6FbwAVwCo_zxWo2K4BhTEtygUYEyzKXhOLLnxsEu0aTGDcYY-AgKylG6GHld2uTbX1ju3XfZs6HrNOhtXk0urPZYD-GrNGDvkFXTnfRTs57jN7ms9X0JV--Pi-mT8vcUApDroHWsjYaWNUYiivSmLKmVQqjllTSyBJ0iZ1gouGEQQNcOCfA2DRqB4yO0f3Jdxf8_mDjoDb-EPoUqUh6oSKUsyOVnygTfIzBOrUL660OnwqwOvahvvtQ5z4SX5z4mLi-teHP9T_B3Tng3fftPml-EzgvqWAYKP0CNEtqNQ</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Li, Xi-ming</creator><creator>Ouyang, Ji-hong</creator><creator>Lu, You</creator><general>Zhejiang University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20150601</creationdate><title>Topic modeling for large-scale text data</title><author>Li, Xi-ming ; Ouyang, Ji-hong ; Lu, You</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-a13b9bca147dc3072dc5b379793e279c951a50f848d6241d168ff81cef81bf143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Communications Engineering</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Convergence</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Inference</topic><topic>Instrumentation</topic><topic>Networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xi-ming</creatorcontrib><creatorcontrib>Ouyang, Ji-hong</creatorcontrib><creatorcontrib>Lu, You</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Frontiers of information technology &amp; electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xi-ming</au><au>Ouyang, Ji-hong</au><au>Lu, You</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topic modeling for large-scale text data</atitle><jtitle>Frontiers of information technology &amp; electronic engineering</jtitle><stitle>Frontiers Inf Technol Electronic Eng</stitle><addtitle>Frontiers of Information Technology & Electronic Engineering</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>16</volume><issue>6</issue><spage>457</spage><epage>465</epage><pages>457-465</pages><issn>2095-9184</issn><eissn>2095-9230</eissn><abstract>This paper develops a novel online algorithm, namely moving average stochastic variational inference (MASVI), which applies the results obtained by previous iterations to smooth out noisy natural gradients. We analyze the convergence property of the proposed algorithm and conduct a set of experiments on two large-scale collections that contain millions of documents. Experimental results indicate that in contrast to algorithms named 'stochastic variational inference' and 'SGRLD', our algorithm achieves a faster convergence rate and better performance.</abstract><cop>Hangzhou</cop><pub>Zhejiang University Press</pub><doi>10.1631/FITEE.1400352</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2095-9184
ispartof Frontiers of information technology & electronic engineering, 2015-06, Vol.16 (6), p.457-465
issn 2095-9184
2095-9230
language eng
recordid cdi_proquest_journals_2918723644
source ProQuest Central UK/Ireland; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Algorithms
Communications Engineering
Computer Hardware
Computer Science
Computer Systems Organization and Communication Networks
Convergence
Electrical Engineering
Electronics and Microelectronics
Inference
Instrumentation
Networks
title Topic modeling for large-scale text data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T23%3A37%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topic%20modeling%20for%20large-scale%20text%20data&rft.jtitle=Frontiers%20of%20information%20technology%20&%20electronic%20engineering&rft.au=Li,%20Xi-ming&rft.date=2015-06-01&rft.volume=16&rft.issue=6&rft.spage=457&rft.epage=465&rft.pages=457-465&rft.issn=2095-9184&rft.eissn=2095-9230&rft_id=info:doi/10.1631/FITEE.1400352&rft_dat=%3Cproquest_cross%3E2918723644%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918723644&rft_id=info:pmid/&rft_cqvip_id=665384013&rfr_iscdi=true