Topic modeling for large-scale text data

This paper develops a novel online algorithm, namely moving average stochastic variational inference (MASVI), which applies the results obtained by previous iterations to smooth out noisy natural gradients. We analyze the convergence property of the proposed algorithm and conduct a set of experiment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of information technology & electronic engineering 2015-06, Vol.16 (6), p.457-465
Hauptverfasser: Li, Xi-ming, Ouyang, Ji-hong, Lu, You
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper develops a novel online algorithm, namely moving average stochastic variational inference (MASVI), which applies the results obtained by previous iterations to smooth out noisy natural gradients. We analyze the convergence property of the proposed algorithm and conduct a set of experiments on two large-scale collections that contain millions of documents. Experimental results indicate that in contrast to algorithms named 'stochastic variational inference' and 'SGRLD', our algorithm achieves a faster convergence rate and better performance.
ISSN:2095-9184
2095-9230
DOI:10.1631/FITEE.1400352