Speech enhancement with a GSC-like structure employing sparse coding

Speech comnmnication is often influenced by various types of interfering signals. To improve the quality of the desired signal, a generalized sidelobe canceller (GSC), which uses a reference signal to estimate the interfering signal, is attracting attention of researchers. However, the interference...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of information technology & electronic engineering 2014-12, Vol.15 (12), p.1154-1163
Hauptverfasser: Yang, Li-chun, Qian, Yun-tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1163
container_issue 12
container_start_page 1154
container_title Frontiers of information technology & electronic engineering
container_volume 15
creator Yang, Li-chun
Qian, Yun-tao
description Speech comnmnication is often influenced by various types of interfering signals. To improve the quality of the desired signal, a generalized sidelobe canceller (GSC), which uses a reference signal to estimate the interfering signal, is attracting attention of researchers. However, the interference suppression of GSC is limited since a little residual desired signal leaks into the reference signal. To overcome this problem, we use sparse coding to suppress the residual desired signal while preserving the reference signal. Sparse coding with the learned dictionary is usually used to reconstruct the desired signal. As the training samples of a desired signal for dictionary learning are not observable in the real environment, the reconstructed desired signal may contain a lot of residual interfering signal. In contrast, the training samples of the interfering signal during the absence of the desired signal for interferer dictionary learning can be achieved through voice activity detection (VAD). Since the reference signal of an interfering signal is coherent to the interferer dictionary, it can be well restructured by sparse coding, while the residual desired signal will be removed. The performance of GSC will be improved since the estimate of the interfering signal with the proposed reference signal is more accurate than ever. Simulation and experiments on a real acoustic environment show that our proposed method is effective in suppressing interfering signals.
doi_str_mv 10.1631/jzus.C1400085
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918723608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>663409142</cqvip_id><sourcerecordid>2918723608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-e3776ef8b1d66a53b52edc5c6dd7b82f7deff6803fa85784bb20c70f9f4738a03</originalsourceid><addsrcrecordid>eNp1kM9LwzAcxYMoOOaO3oOeO5Om-dGjVJ3CwMMUvJU0_Wbt3NouaZH515uxOU-evu8Ln_cePISuKZlSwejd6nvw04wmhBDFz9CIKpFGNBUf5yfN6SWaeL8KCGGcp4KN0MOiAzAVhqbSjYENND3-qvsKazxbZNG6_gTsezeYfnCAYdOt213dLLHvtPOATVuG7wpdWL32MDneMXp_enzLnqP56-wlu59HhjHaR8CkFGBVQUshNGcFj6E03IiylIWKrSzBWqEIs1pxqZKiiImRxKY2kUxpwsbo9pDbuXY7gO_zVTu4JlTmcUqVjJkgKlDRgTKu9d6BzTtXb7Tb5ZTk-63y_Vb571aBnx54H7hmCe4v9T_DzbGgapvlNnhODUKwhKQ0idkPmtt31g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918723608</pqid></control><display><type>article</type><title>Speech enhancement with a GSC-like structure employing sparse coding</title><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Yang, Li-chun ; Qian, Yun-tao</creator><creatorcontrib>Yang, Li-chun ; Qian, Yun-tao</creatorcontrib><description>Speech comnmnication is often influenced by various types of interfering signals. To improve the quality of the desired signal, a generalized sidelobe canceller (GSC), which uses a reference signal to estimate the interfering signal, is attracting attention of researchers. However, the interference suppression of GSC is limited since a little residual desired signal leaks into the reference signal. To overcome this problem, we use sparse coding to suppress the residual desired signal while preserving the reference signal. Sparse coding with the learned dictionary is usually used to reconstruct the desired signal. As the training samples of a desired signal for dictionary learning are not observable in the real environment, the reconstructed desired signal may contain a lot of residual interfering signal. In contrast, the training samples of the interfering signal during the absence of the desired signal for interferer dictionary learning can be achieved through voice activity detection (VAD). Since the reference signal of an interfering signal is coherent to the interferer dictionary, it can be well restructured by sparse coding, while the residual desired signal will be removed. The performance of GSC will be improved since the estimate of the interfering signal with the proposed reference signal is more accurate than ever. Simulation and experiments on a real acoustic environment show that our proposed method is effective in suppressing interfering signals.</description><identifier>ISSN: 1869-1951</identifier><identifier>ISSN: 2095-9184</identifier><identifier>EISSN: 1869-196X</identifier><identifier>EISSN: 2095-9230</identifier><identifier>DOI: 10.1631/jzus.C1400085</identifier><language>eng</language><publisher>Heidelberg: Zhejiang University Press</publisher><subject>Coding ; Communications Engineering ; Computer Hardware ; Computer Science ; Computer Systems Organization and Communication Networks ; Dictionaries ; Electrical Engineering ; Electronics and Microelectronics ; Instrumentation ; Learning ; Networks ; Reference signals ; Sidelobes ; Signal quality ; Speech processing ; Training ; Voice activity detectors ; Voice communication ; Voice recognition</subject><ispartof>Frontiers of information technology &amp; electronic engineering, 2014-12, Vol.15 (12), p.1154-1163</ispartof><rights>Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2014</rights><rights>Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2014.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-e3776ef8b1d66a53b52edc5c6dd7b82f7deff6803fa85784bb20c70f9f4738a03</citedby><cites>FETCH-LOGICAL-c331t-e3776ef8b1d66a53b52edc5c6dd7b82f7deff6803fa85784bb20c70f9f4738a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/89589X/89589X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1631/jzus.C1400085$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918723608?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Yang, Li-chun</creatorcontrib><creatorcontrib>Qian, Yun-tao</creatorcontrib><title>Speech enhancement with a GSC-like structure employing sparse coding</title><title>Frontiers of information technology &amp; electronic engineering</title><addtitle>J. Zhejiang Univ. - Sci. C</addtitle><addtitle>Journal of zhejiang university science</addtitle><description>Speech comnmnication is often influenced by various types of interfering signals. To improve the quality of the desired signal, a generalized sidelobe canceller (GSC), which uses a reference signal to estimate the interfering signal, is attracting attention of researchers. However, the interference suppression of GSC is limited since a little residual desired signal leaks into the reference signal. To overcome this problem, we use sparse coding to suppress the residual desired signal while preserving the reference signal. Sparse coding with the learned dictionary is usually used to reconstruct the desired signal. As the training samples of a desired signal for dictionary learning are not observable in the real environment, the reconstructed desired signal may contain a lot of residual interfering signal. In contrast, the training samples of the interfering signal during the absence of the desired signal for interferer dictionary learning can be achieved through voice activity detection (VAD). Since the reference signal of an interfering signal is coherent to the interferer dictionary, it can be well restructured by sparse coding, while the residual desired signal will be removed. The performance of GSC will be improved since the estimate of the interfering signal with the proposed reference signal is more accurate than ever. Simulation and experiments on a real acoustic environment show that our proposed method is effective in suppressing interfering signals.</description><subject>Coding</subject><subject>Communications Engineering</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Dictionaries</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Instrumentation</subject><subject>Learning</subject><subject>Networks</subject><subject>Reference signals</subject><subject>Sidelobes</subject><subject>Signal quality</subject><subject>Speech processing</subject><subject>Training</subject><subject>Voice activity detectors</subject><subject>Voice communication</subject><subject>Voice recognition</subject><issn>1869-1951</issn><issn>2095-9184</issn><issn>1869-196X</issn><issn>2095-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM9LwzAcxYMoOOaO3oOeO5Om-dGjVJ3CwMMUvJU0_Wbt3NouaZH515uxOU-evu8Ln_cePISuKZlSwejd6nvw04wmhBDFz9CIKpFGNBUf5yfN6SWaeL8KCGGcp4KN0MOiAzAVhqbSjYENND3-qvsKazxbZNG6_gTsezeYfnCAYdOt213dLLHvtPOATVuG7wpdWL32MDneMXp_enzLnqP56-wlu59HhjHaR8CkFGBVQUshNGcFj6E03IiylIWKrSzBWqEIs1pxqZKiiImRxKY2kUxpwsbo9pDbuXY7gO_zVTu4JlTmcUqVjJkgKlDRgTKu9d6BzTtXb7Tb5ZTk-63y_Vb571aBnx54H7hmCe4v9T_DzbGgapvlNnhODUKwhKQ0idkPmtt31g</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Yang, Li-chun</creator><creator>Qian, Yun-tao</creator><general>Zhejiang University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20141201</creationdate><title>Speech enhancement with a GSC-like structure employing sparse coding</title><author>Yang, Li-chun ; Qian, Yun-tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-e3776ef8b1d66a53b52edc5c6dd7b82f7deff6803fa85784bb20c70f9f4738a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Coding</topic><topic>Communications Engineering</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Dictionaries</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Instrumentation</topic><topic>Learning</topic><topic>Networks</topic><topic>Reference signals</topic><topic>Sidelobes</topic><topic>Signal quality</topic><topic>Speech processing</topic><topic>Training</topic><topic>Voice activity detectors</topic><topic>Voice communication</topic><topic>Voice recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Li-chun</creatorcontrib><creatorcontrib>Qian, Yun-tao</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Frontiers of information technology &amp; electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Li-chun</au><au>Qian, Yun-tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Speech enhancement with a GSC-like structure employing sparse coding</atitle><jtitle>Frontiers of information technology &amp; electronic engineering</jtitle><stitle>J. Zhejiang Univ. - Sci. C</stitle><addtitle>Journal of zhejiang university science</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>15</volume><issue>12</issue><spage>1154</spage><epage>1163</epage><pages>1154-1163</pages><issn>1869-1951</issn><issn>2095-9184</issn><eissn>1869-196X</eissn><eissn>2095-9230</eissn><abstract>Speech comnmnication is often influenced by various types of interfering signals. To improve the quality of the desired signal, a generalized sidelobe canceller (GSC), which uses a reference signal to estimate the interfering signal, is attracting attention of researchers. However, the interference suppression of GSC is limited since a little residual desired signal leaks into the reference signal. To overcome this problem, we use sparse coding to suppress the residual desired signal while preserving the reference signal. Sparse coding with the learned dictionary is usually used to reconstruct the desired signal. As the training samples of a desired signal for dictionary learning are not observable in the real environment, the reconstructed desired signal may contain a lot of residual interfering signal. In contrast, the training samples of the interfering signal during the absence of the desired signal for interferer dictionary learning can be achieved through voice activity detection (VAD). Since the reference signal of an interfering signal is coherent to the interferer dictionary, it can be well restructured by sparse coding, while the residual desired signal will be removed. The performance of GSC will be improved since the estimate of the interfering signal with the proposed reference signal is more accurate than ever. Simulation and experiments on a real acoustic environment show that our proposed method is effective in suppressing interfering signals.</abstract><cop>Heidelberg</cop><pub>Zhejiang University Press</pub><doi>10.1631/jzus.C1400085</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1869-1951
ispartof Frontiers of information technology & electronic engineering, 2014-12, Vol.15 (12), p.1154-1163
issn 1869-1951
2095-9184
1869-196X
2095-9230
language eng
recordid cdi_proquest_journals_2918723608
source ProQuest Central UK/Ireland; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Coding
Communications Engineering
Computer Hardware
Computer Science
Computer Systems Organization and Communication Networks
Dictionaries
Electrical Engineering
Electronics and Microelectronics
Instrumentation
Learning
Networks
Reference signals
Sidelobes
Signal quality
Speech processing
Training
Voice activity detectors
Voice communication
Voice recognition
title Speech enhancement with a GSC-like structure employing sparse coding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T08%3A14%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Speech%20enhancement%20with%20a%20GSC-like%20structure%20employing%20sparse%20coding&rft.jtitle=Frontiers%20of%20information%20technology%20&%20electronic%20engineering&rft.au=Yang,%20Li-chun&rft.date=2014-12-01&rft.volume=15&rft.issue=12&rft.spage=1154&rft.epage=1163&rft.pages=1154-1163&rft.issn=1869-1951&rft.eissn=1869-196X&rft_id=info:doi/10.1631/jzus.C1400085&rft_dat=%3Cproquest_cross%3E2918723608%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918723608&rft_id=info:pmid/&rft_cqvip_id=663409142&rfr_iscdi=true