Speech enhancement with a GSC-like structure employing sparse coding
Speech comnmnication is often influenced by various types of interfering signals. To improve the quality of the desired signal, a generalized sidelobe canceller (GSC), which uses a reference signal to estimate the interfering signal, is attracting attention of researchers. However, the interference...
Gespeichert in:
Veröffentlicht in: | Frontiers of information technology & electronic engineering 2014-12, Vol.15 (12), p.1154-1163 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1163 |
---|---|
container_issue | 12 |
container_start_page | 1154 |
container_title | Frontiers of information technology & electronic engineering |
container_volume | 15 |
creator | Yang, Li-chun Qian, Yun-tao |
description | Speech comnmnication is often influenced by various types of interfering signals. To improve the quality of the desired signal, a generalized sidelobe canceller (GSC), which uses a reference signal to estimate the interfering signal, is attracting attention of researchers. However, the interference suppression of GSC is limited since a little residual desired signal leaks into the reference signal. To overcome this problem, we use sparse coding to suppress the residual desired signal while preserving the reference signal. Sparse coding with the learned dictionary is usually used to reconstruct the desired signal. As the training samples of a desired signal for dictionary learning are not observable in the real environment, the reconstructed desired signal may contain a lot of residual interfering signal. In contrast, the training samples of the interfering signal during the absence of the desired signal for interferer dictionary learning can be achieved through voice activity detection (VAD). Since the reference signal of an interfering signal is coherent to the interferer dictionary, it can be well restructured by sparse coding, while the residual desired signal will be removed. The performance of GSC will be improved since the estimate of the interfering signal with the proposed reference signal is more accurate than ever. Simulation and experiments on a real acoustic environment show that our proposed method is effective in suppressing interfering signals. |
doi_str_mv | 10.1631/jzus.C1400085 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918723608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>663409142</cqvip_id><sourcerecordid>2918723608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-e3776ef8b1d66a53b52edc5c6dd7b82f7deff6803fa85784bb20c70f9f4738a03</originalsourceid><addsrcrecordid>eNp1kM9LwzAcxYMoOOaO3oOeO5Om-dGjVJ3CwMMUvJU0_Wbt3NouaZH515uxOU-evu8Ln_cePISuKZlSwejd6nvw04wmhBDFz9CIKpFGNBUf5yfN6SWaeL8KCGGcp4KN0MOiAzAVhqbSjYENND3-qvsKazxbZNG6_gTsezeYfnCAYdOt213dLLHvtPOATVuG7wpdWL32MDneMXp_enzLnqP56-wlu59HhjHaR8CkFGBVQUshNGcFj6E03IiylIWKrSzBWqEIs1pxqZKiiImRxKY2kUxpwsbo9pDbuXY7gO_zVTu4JlTmcUqVjJkgKlDRgTKu9d6BzTtXb7Tb5ZTk-63y_Vb571aBnx54H7hmCe4v9T_DzbGgapvlNnhODUKwhKQ0idkPmtt31g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918723608</pqid></control><display><type>article</type><title>Speech enhancement with a GSC-like structure employing sparse coding</title><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Yang, Li-chun ; Qian, Yun-tao</creator><creatorcontrib>Yang, Li-chun ; Qian, Yun-tao</creatorcontrib><description>Speech comnmnication is often influenced by various types of interfering signals. To improve the quality of the desired signal, a generalized sidelobe canceller (GSC), which uses a reference signal to estimate the interfering signal, is attracting attention of researchers. However, the interference suppression of GSC is limited since a little residual desired signal leaks into the reference signal. To overcome this problem, we use sparse coding to suppress the residual desired signal while preserving the reference signal. Sparse coding with the learned dictionary is usually used to reconstruct the desired signal. As the training samples of a desired signal for dictionary learning are not observable in the real environment, the reconstructed desired signal may contain a lot of residual interfering signal. In contrast, the training samples of the interfering signal during the absence of the desired signal for interferer dictionary learning can be achieved through voice activity detection (VAD). Since the reference signal of an interfering signal is coherent to the interferer dictionary, it can be well restructured by sparse coding, while the residual desired signal will be removed. The performance of GSC will be improved since the estimate of the interfering signal with the proposed reference signal is more accurate than ever. Simulation and experiments on a real acoustic environment show that our proposed method is effective in suppressing interfering signals.</description><identifier>ISSN: 1869-1951</identifier><identifier>ISSN: 2095-9184</identifier><identifier>EISSN: 1869-196X</identifier><identifier>EISSN: 2095-9230</identifier><identifier>DOI: 10.1631/jzus.C1400085</identifier><language>eng</language><publisher>Heidelberg: Zhejiang University Press</publisher><subject>Coding ; Communications Engineering ; Computer Hardware ; Computer Science ; Computer Systems Organization and Communication Networks ; Dictionaries ; Electrical Engineering ; Electronics and Microelectronics ; Instrumentation ; Learning ; Networks ; Reference signals ; Sidelobes ; Signal quality ; Speech processing ; Training ; Voice activity detectors ; Voice communication ; Voice recognition</subject><ispartof>Frontiers of information technology & electronic engineering, 2014-12, Vol.15 (12), p.1154-1163</ispartof><rights>Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2014</rights><rights>Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2014.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-e3776ef8b1d66a53b52edc5c6dd7b82f7deff6803fa85784bb20c70f9f4738a03</citedby><cites>FETCH-LOGICAL-c331t-e3776ef8b1d66a53b52edc5c6dd7b82f7deff6803fa85784bb20c70f9f4738a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/89589X/89589X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1631/jzus.C1400085$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918723608?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Yang, Li-chun</creatorcontrib><creatorcontrib>Qian, Yun-tao</creatorcontrib><title>Speech enhancement with a GSC-like structure employing sparse coding</title><title>Frontiers of information technology & electronic engineering</title><addtitle>J. Zhejiang Univ. - Sci. C</addtitle><addtitle>Journal of zhejiang university science</addtitle><description>Speech comnmnication is often influenced by various types of interfering signals. To improve the quality of the desired signal, a generalized sidelobe canceller (GSC), which uses a reference signal to estimate the interfering signal, is attracting attention of researchers. However, the interference suppression of GSC is limited since a little residual desired signal leaks into the reference signal. To overcome this problem, we use sparse coding to suppress the residual desired signal while preserving the reference signal. Sparse coding with the learned dictionary is usually used to reconstruct the desired signal. As the training samples of a desired signal for dictionary learning are not observable in the real environment, the reconstructed desired signal may contain a lot of residual interfering signal. In contrast, the training samples of the interfering signal during the absence of the desired signal for interferer dictionary learning can be achieved through voice activity detection (VAD). Since the reference signal of an interfering signal is coherent to the interferer dictionary, it can be well restructured by sparse coding, while the residual desired signal will be removed. The performance of GSC will be improved since the estimate of the interfering signal with the proposed reference signal is more accurate than ever. Simulation and experiments on a real acoustic environment show that our proposed method is effective in suppressing interfering signals.</description><subject>Coding</subject><subject>Communications Engineering</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Dictionaries</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Instrumentation</subject><subject>Learning</subject><subject>Networks</subject><subject>Reference signals</subject><subject>Sidelobes</subject><subject>Signal quality</subject><subject>Speech processing</subject><subject>Training</subject><subject>Voice activity detectors</subject><subject>Voice communication</subject><subject>Voice recognition</subject><issn>1869-1951</issn><issn>2095-9184</issn><issn>1869-196X</issn><issn>2095-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM9LwzAcxYMoOOaO3oOeO5Om-dGjVJ3CwMMUvJU0_Wbt3NouaZH515uxOU-evu8Ln_cePISuKZlSwejd6nvw04wmhBDFz9CIKpFGNBUf5yfN6SWaeL8KCGGcp4KN0MOiAzAVhqbSjYENND3-qvsKazxbZNG6_gTsezeYfnCAYdOt213dLLHvtPOATVuG7wpdWL32MDneMXp_enzLnqP56-wlu59HhjHaR8CkFGBVQUshNGcFj6E03IiylIWKrSzBWqEIs1pxqZKiiImRxKY2kUxpwsbo9pDbuXY7gO_zVTu4JlTmcUqVjJkgKlDRgTKu9d6BzTtXb7Tb5ZTk-63y_Vb571aBnx54H7hmCe4v9T_DzbGgapvlNnhODUKwhKQ0idkPmtt31g</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Yang, Li-chun</creator><creator>Qian, Yun-tao</creator><general>Zhejiang University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20141201</creationdate><title>Speech enhancement with a GSC-like structure employing sparse coding</title><author>Yang, Li-chun ; Qian, Yun-tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-e3776ef8b1d66a53b52edc5c6dd7b82f7deff6803fa85784bb20c70f9f4738a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Coding</topic><topic>Communications Engineering</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Dictionaries</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Instrumentation</topic><topic>Learning</topic><topic>Networks</topic><topic>Reference signals</topic><topic>Sidelobes</topic><topic>Signal quality</topic><topic>Speech processing</topic><topic>Training</topic><topic>Voice activity detectors</topic><topic>Voice communication</topic><topic>Voice recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Li-chun</creatorcontrib><creatorcontrib>Qian, Yun-tao</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Frontiers of information technology & electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Li-chun</au><au>Qian, Yun-tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Speech enhancement with a GSC-like structure employing sparse coding</atitle><jtitle>Frontiers of information technology & electronic engineering</jtitle><stitle>J. Zhejiang Univ. - Sci. C</stitle><addtitle>Journal of zhejiang university science</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>15</volume><issue>12</issue><spage>1154</spage><epage>1163</epage><pages>1154-1163</pages><issn>1869-1951</issn><issn>2095-9184</issn><eissn>1869-196X</eissn><eissn>2095-9230</eissn><abstract>Speech comnmnication is often influenced by various types of interfering signals. To improve the quality of the desired signal, a generalized sidelobe canceller (GSC), which uses a reference signal to estimate the interfering signal, is attracting attention of researchers. However, the interference suppression of GSC is limited since a little residual desired signal leaks into the reference signal. To overcome this problem, we use sparse coding to suppress the residual desired signal while preserving the reference signal. Sparse coding with the learned dictionary is usually used to reconstruct the desired signal. As the training samples of a desired signal for dictionary learning are not observable in the real environment, the reconstructed desired signal may contain a lot of residual interfering signal. In contrast, the training samples of the interfering signal during the absence of the desired signal for interferer dictionary learning can be achieved through voice activity detection (VAD). Since the reference signal of an interfering signal is coherent to the interferer dictionary, it can be well restructured by sparse coding, while the residual desired signal will be removed. The performance of GSC will be improved since the estimate of the interfering signal with the proposed reference signal is more accurate than ever. Simulation and experiments on a real acoustic environment show that our proposed method is effective in suppressing interfering signals.</abstract><cop>Heidelberg</cop><pub>Zhejiang University Press</pub><doi>10.1631/jzus.C1400085</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1869-1951 |
ispartof | Frontiers of information technology & electronic engineering, 2014-12, Vol.15 (12), p.1154-1163 |
issn | 1869-1951 2095-9184 1869-196X 2095-9230 |
language | eng |
recordid | cdi_proquest_journals_2918723608 |
source | ProQuest Central UK/Ireland; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Coding Communications Engineering Computer Hardware Computer Science Computer Systems Organization and Communication Networks Dictionaries Electrical Engineering Electronics and Microelectronics Instrumentation Learning Networks Reference signals Sidelobes Signal quality Speech processing Training Voice activity detectors Voice communication Voice recognition |
title | Speech enhancement with a GSC-like structure employing sparse coding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T08%3A14%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Speech%20enhancement%20with%20a%20GSC-like%20structure%20employing%20sparse%20coding&rft.jtitle=Frontiers%20of%20information%20technology%20&%20electronic%20engineering&rft.au=Yang,%20Li-chun&rft.date=2014-12-01&rft.volume=15&rft.issue=12&rft.spage=1154&rft.epage=1163&rft.pages=1154-1163&rft.issn=1869-1951&rft.eissn=1869-196X&rft_id=info:doi/10.1631/jzus.C1400085&rft_dat=%3Cproquest_cross%3E2918723608%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918723608&rft_id=info:pmid/&rft_cqvip_id=663409142&rfr_iscdi=true |