Speech enhancement with a GSC-like structure employing sparse coding

Speech comnmnication is often influenced by various types of interfering signals. To improve the quality of the desired signal, a generalized sidelobe canceller (GSC), which uses a reference signal to estimate the interfering signal, is attracting attention of researchers. However, the interference...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of information technology & electronic engineering 2014-12, Vol.15 (12), p.1154-1163
Hauptverfasser: Yang, Li-chun, Qian, Yun-tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Speech comnmnication is often influenced by various types of interfering signals. To improve the quality of the desired signal, a generalized sidelobe canceller (GSC), which uses a reference signal to estimate the interfering signal, is attracting attention of researchers. However, the interference suppression of GSC is limited since a little residual desired signal leaks into the reference signal. To overcome this problem, we use sparse coding to suppress the residual desired signal while preserving the reference signal. Sparse coding with the learned dictionary is usually used to reconstruct the desired signal. As the training samples of a desired signal for dictionary learning are not observable in the real environment, the reconstructed desired signal may contain a lot of residual interfering signal. In contrast, the training samples of the interfering signal during the absence of the desired signal for interferer dictionary learning can be achieved through voice activity detection (VAD). Since the reference signal of an interfering signal is coherent to the interferer dictionary, it can be well restructured by sparse coding, while the residual desired signal will be removed. The performance of GSC will be improved since the estimate of the interfering signal with the proposed reference signal is more accurate than ever. Simulation and experiments on a real acoustic environment show that our proposed method is effective in suppressing interfering signals.
ISSN:1869-1951
2095-9184
1869-196X
2095-9230
DOI:10.1631/jzus.C1400085