Steady-State Temperature-Sensitive Electrical Parameters’ Characteristics of GaN HEMT Power Devices

Gallium nitride high-electron-mobility transistor (GaN HEMT) power devices are favored in various scenarios due to their high-power density and efficiency. However, with the significant increase in the heat flux density, the junction temperature of GaN HEMT has become a crucial factor in device reli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2024-01, Vol.13 (2), p.363
Hauptverfasser: Wang, Kaihong, Zhu, Yidi, Zhao, Hao, Zhao, Ruixue, Zhu, Binxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gallium nitride high-electron-mobility transistor (GaN HEMT) power devices are favored in various scenarios due to their high-power density and efficiency. However, with the significant increase in the heat flux density, the junction temperature of GaN HEMT has become a crucial factor in device reliability. Since the junction temperature monitoring technology for GaN HEMT based on temperature-sensitive electrical parameters (TSEPs) is still in the exploratory stage, the TSEPs’ characteristics of GaN HEMT have not been definitively established. In this paper, for the common steady-state TSEPs of GaN HEMT, the variation rules of the saturation voltage with low current injection, threshold voltage, and body-like diode voltage drop with temperature are investigated. The influences on the three TSEPs’ characteristics are considered, and their stability is discussed. Through experimental comparison, it is found that the saturation voltage with low current injection retains favorable temperature-sensitive characteristics, which has potential application value in junction temperature measurement. However, the threshold voltage as a TSEP for certain GaN HEMT is not ideal in terms of linearity and stability.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics13020363