Fast global kernel fuzzy c-means clustering algorithm for consonant/vowel segmentation of speech signal

We propose a novel clustering algorithm using fast global kernel fuzzy c-means-F(FGKFCM-F), where F refers to kernelized feature space. This algorithm proceeds in an incremental way to derive the near-optimal solution by solving all intermediate problems using kernel-based fuzzy c-means-F(KFCM-F) as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of information technology & electronic engineering 2014-07, Vol.15 (7), p.551-563
Hauptverfasser: Zang, Xian, Vista, Felipe P., Chong, Kil To
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a novel clustering algorithm using fast global kernel fuzzy c-means-F(FGKFCM-F), where F refers to kernelized feature space. This algorithm proceeds in an incremental way to derive the near-optimal solution by solving all intermediate problems using kernel-based fuzzy c-means-F(KFCM-F) as a local search procedure. Due to the incremental nature and the nonlinear properties inherited from KFCM-F, this algorithm overcomes the two shortcomings of fuzzy c-means(FCM): sen- sitivity to initialization and inability to use nonlinear separable data. An accelerating scheme is developed to reduce the compu-tational complexity without significantly affecting the solution quality. Experiments are carried out to test the proposed algorithm on a nonlinear artificial dataset and a real-world dataset of speech signals for consonant/vowel segmentation. Simulation results demonstrate the effectiveness of the proposed algorithm in improving clustering performance on both types of datasets.
ISSN:1869-1951
2095-9184
1869-196X
2095-9230
DOI:10.1631/jzus.C1300320