Automatic inspection of LED indicators on automobile meters based on a seeded region growing algorithm
Light emitting diode (LED) indicators used on automobile meters are essential for safe driving and few errors can be tolerated. The current manual inspection approach can achieve only 95% accuracy rate in weeding out errors occurring in the production process. It is imperative to improve the accurac...
Gespeichert in:
Veröffentlicht in: | Frontiers of information technology & electronic engineering 2010-03, Vol.11 (3), p.199-205 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 205 |
---|---|
container_issue | 3 |
container_start_page | 199 |
container_title | Frontiers of information technology & electronic engineering |
container_volume | 11 |
creator | Zhou, Hong Xu, Hai-er He, Pei-qi Song, Zhi-bai Geng, Chen-ge |
description | Light emitting diode (LED) indicators used on automobile meters are essential for safe driving and few errors can be tolerated. The current manual inspection approach can achieve only 95% accuracy rate in weeding out errors occurring in the production process. It is imperative to improve the accuracy of the inspection process to better achieve the goal of safe driving. This paper proposes an automatic inspection method for LED indicators for use on automobile meters. Firstly, red-green-blue (RGB) color images of LED indicators are acquired and converted into R, G, and B intensity images. A seeded region growing (SRG) algorithm, which selects seeds automatically based on Otsu's method, is then used to extract the LED indicator regions. Finally, a region matching process based on the seed and three area parameters of each region is applied to inspect the LED indicators one by one to locate any errors. Experiments on standard automobile meters showed that the inspection accuracy rate of this method was up to 99.52% and the inspection speed was faster compared with the manual method. Thus, the new method shows good prospects for practical application. |
doi_str_mv | 10.1631/jzus.C0910144 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918722628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>33031685</cqvip_id><sourcerecordid>2918722628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-a1ab7182d18647ab3617961b3ec2049a792fc234f8783b3e4b184d87bbeba0643</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxSMEElXpyB7BnJKzHdsZq1I-pEosILFZduKkLk3c2q4Q_PU4tMDELXd6_r076yXJJeRToBhu1p97P53nJeRAyEkyAk7LDEr6evo7F3CeTLxf57FwUZQUj5Jmtg-2k8FUqen9VlfB2D61Tbpc3EalNpUM1vk0inIgrTIbnXY66Cgq6XX9_ZR6res4O90O_tbZd9O3qdy01pmw6i6Ss0ZuvJ4c-zh5uVs8zx-y5dP943y2zCrEWcgkSMWAozr-mDCpMAVWUlBYVygnpWQlaiqEScMZx1ElCjipOVNKK5lTgsfJ9WHv1tndXvsg1nbv-nhSoBI4Q4giHqnsQFXOeu90I7bOdNJ9CMjFkKYY0hQ_aUZ-euB95PpWu7-t_xmujgdWtm930SOUrN6amJ3AOMdAeYG_AHDDg4c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918722628</pqid></control><display><type>article</type><title>Automatic inspection of LED indicators on automobile meters based on a seeded region growing algorithm</title><source>SpringerLink_现刊</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Zhou, Hong ; Xu, Hai-er ; He, Pei-qi ; Song, Zhi-bai ; Geng, Chen-ge</creator><creatorcontrib>Zhou, Hong ; Xu, Hai-er ; He, Pei-qi ; Song, Zhi-bai ; Geng, Chen-ge</creatorcontrib><description>Light emitting diode (LED) indicators used on automobile meters are essential for safe driving and few errors can be tolerated. The current manual inspection approach can achieve only 95% accuracy rate in weeding out errors occurring in the production process. It is imperative to improve the accuracy of the inspection process to better achieve the goal of safe driving. This paper proposes an automatic inspection method for LED indicators for use on automobile meters. Firstly, red-green-blue (RGB) color images of LED indicators are acquired and converted into R, G, and B intensity images. A seeded region growing (SRG) algorithm, which selects seeds automatically based on Otsu's method, is then used to extract the LED indicator regions. Finally, a region matching process based on the seed and three area parameters of each region is applied to inspect the LED indicators one by one to locate any errors. Experiments on standard automobile meters showed that the inspection accuracy rate of this method was up to 99.52% and the inspection speed was faster compared with the manual method. Thus, the new method shows good prospects for practical application.</description><identifier>ISSN: 1869-1951</identifier><identifier>ISSN: 2095-9184</identifier><identifier>EISSN: 1869-196X</identifier><identifier>EISSN: 2095-9230</identifier><identifier>DOI: 10.1631/jzus.C0910144</identifier><language>eng</language><publisher>Heidelberg: SP Zhejiang University Press</publisher><subject>Accuracy ; Algorithms ; Automobiles ; Color imagery ; Communications Engineering ; Computer Hardware ; Computer Science ; Computer Systems Organization and Communication Networks ; Electrical Engineering ; Electronics and Microelectronics ; Errors ; Image acquisition ; Indicators ; Inspection ; Instrumentation ; LED指示灯 ; Light emitting diodes ; Networks ; 人工检测 ; 子区域 ; 检查过程 ; 汽车仪表 ; 生长算法 ; 自动检测方法</subject><ispartof>Frontiers of information technology & electronic engineering, 2010-03, Vol.11 (3), p.199-205</ispartof><rights>Springer-Verlag Berlin Heidelberg and “Journal of Zhejiang University Science” Editorial Office 2010</rights><rights>Springer-Verlag Berlin Heidelberg and “Journal of Zhejiang University Science” Editorial Office 2010.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-a1ab7182d18647ab3617961b3ec2049a792fc234f8783b3e4b184d87bbeba0643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/89589X/89589X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1631/jzus.C0910144$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918722628?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Zhou, Hong</creatorcontrib><creatorcontrib>Xu, Hai-er</creatorcontrib><creatorcontrib>He, Pei-qi</creatorcontrib><creatorcontrib>Song, Zhi-bai</creatorcontrib><creatorcontrib>Geng, Chen-ge</creatorcontrib><title>Automatic inspection of LED indicators on automobile meters based on a seeded region growing algorithm</title><title>Frontiers of information technology & electronic engineering</title><addtitle>J. Zhejiang Univ. - Sci. C</addtitle><addtitle>Journal of zhejiang university science</addtitle><description>Light emitting diode (LED) indicators used on automobile meters are essential for safe driving and few errors can be tolerated. The current manual inspection approach can achieve only 95% accuracy rate in weeding out errors occurring in the production process. It is imperative to improve the accuracy of the inspection process to better achieve the goal of safe driving. This paper proposes an automatic inspection method for LED indicators for use on automobile meters. Firstly, red-green-blue (RGB) color images of LED indicators are acquired and converted into R, G, and B intensity images. A seeded region growing (SRG) algorithm, which selects seeds automatically based on Otsu's method, is then used to extract the LED indicator regions. Finally, a region matching process based on the seed and three area parameters of each region is applied to inspect the LED indicators one by one to locate any errors. Experiments on standard automobile meters showed that the inspection accuracy rate of this method was up to 99.52% and the inspection speed was faster compared with the manual method. Thus, the new method shows good prospects for practical application.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Automobiles</subject><subject>Color imagery</subject><subject>Communications Engineering</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Errors</subject><subject>Image acquisition</subject><subject>Indicators</subject><subject>Inspection</subject><subject>Instrumentation</subject><subject>LED指示灯</subject><subject>Light emitting diodes</subject><subject>Networks</subject><subject>人工检测</subject><subject>子区域</subject><subject>检查过程</subject><subject>汽车仪表</subject><subject>生长算法</subject><subject>自动检测方法</subject><issn>1869-1951</issn><issn>2095-9184</issn><issn>1869-196X</issn><issn>2095-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kL1PwzAQxSMEElXpyB7BnJKzHdsZq1I-pEosILFZduKkLk3c2q4Q_PU4tMDELXd6_r076yXJJeRToBhu1p97P53nJeRAyEkyAk7LDEr6evo7F3CeTLxf57FwUZQUj5Jmtg-2k8FUqen9VlfB2D61Tbpc3EalNpUM1vk0inIgrTIbnXY66Cgq6XX9_ZR6res4O90O_tbZd9O3qdy01pmw6i6Ss0ZuvJ4c-zh5uVs8zx-y5dP943y2zCrEWcgkSMWAozr-mDCpMAVWUlBYVygnpWQlaiqEScMZx1ElCjipOVNKK5lTgsfJ9WHv1tndXvsg1nbv-nhSoBI4Q4giHqnsQFXOeu90I7bOdNJ9CMjFkKYY0hQ_aUZ-euB95PpWu7-t_xmujgdWtm930SOUrN6amJ3AOMdAeYG_AHDDg4c</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Zhou, Hong</creator><creator>Xu, Hai-er</creator><creator>He, Pei-qi</creator><creator>Song, Zhi-bai</creator><creator>Geng, Chen-ge</creator><general>SP Zhejiang University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20100301</creationdate><title>Automatic inspection of LED indicators on automobile meters based on a seeded region growing algorithm</title><author>Zhou, Hong ; Xu, Hai-er ; He, Pei-qi ; Song, Zhi-bai ; Geng, Chen-ge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-a1ab7182d18647ab3617961b3ec2049a792fc234f8783b3e4b184d87bbeba0643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Automobiles</topic><topic>Color imagery</topic><topic>Communications Engineering</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Errors</topic><topic>Image acquisition</topic><topic>Indicators</topic><topic>Inspection</topic><topic>Instrumentation</topic><topic>LED指示灯</topic><topic>Light emitting diodes</topic><topic>Networks</topic><topic>人工检测</topic><topic>子区域</topic><topic>检查过程</topic><topic>汽车仪表</topic><topic>生长算法</topic><topic>自动检测方法</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Hong</creatorcontrib><creatorcontrib>Xu, Hai-er</creatorcontrib><creatorcontrib>He, Pei-qi</creatorcontrib><creatorcontrib>Song, Zhi-bai</creatorcontrib><creatorcontrib>Geng, Chen-ge</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Frontiers of information technology & electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Hong</au><au>Xu, Hai-er</au><au>He, Pei-qi</au><au>Song, Zhi-bai</au><au>Geng, Chen-ge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic inspection of LED indicators on automobile meters based on a seeded region growing algorithm</atitle><jtitle>Frontiers of information technology & electronic engineering</jtitle><stitle>J. Zhejiang Univ. - Sci. C</stitle><addtitle>Journal of zhejiang university science</addtitle><date>2010-03-01</date><risdate>2010</risdate><volume>11</volume><issue>3</issue><spage>199</spage><epage>205</epage><pages>199-205</pages><issn>1869-1951</issn><issn>2095-9184</issn><eissn>1869-196X</eissn><eissn>2095-9230</eissn><abstract>Light emitting diode (LED) indicators used on automobile meters are essential for safe driving and few errors can be tolerated. The current manual inspection approach can achieve only 95% accuracy rate in weeding out errors occurring in the production process. It is imperative to improve the accuracy of the inspection process to better achieve the goal of safe driving. This paper proposes an automatic inspection method for LED indicators for use on automobile meters. Firstly, red-green-blue (RGB) color images of LED indicators are acquired and converted into R, G, and B intensity images. A seeded region growing (SRG) algorithm, which selects seeds automatically based on Otsu's method, is then used to extract the LED indicator regions. Finally, a region matching process based on the seed and three area parameters of each region is applied to inspect the LED indicators one by one to locate any errors. Experiments on standard automobile meters showed that the inspection accuracy rate of this method was up to 99.52% and the inspection speed was faster compared with the manual method. Thus, the new method shows good prospects for practical application.</abstract><cop>Heidelberg</cop><pub>SP Zhejiang University Press</pub><doi>10.1631/jzus.C0910144</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1869-1951 |
ispartof | Frontiers of information technology & electronic engineering, 2010-03, Vol.11 (3), p.199-205 |
issn | 1869-1951 2095-9184 1869-196X 2095-9230 |
language | eng |
recordid | cdi_proquest_journals_2918722628 |
source | SpringerLink_现刊; Alma/SFX Local Collection; ProQuest Central |
subjects | Accuracy Algorithms Automobiles Color imagery Communications Engineering Computer Hardware Computer Science Computer Systems Organization and Communication Networks Electrical Engineering Electronics and Microelectronics Errors Image acquisition Indicators Inspection Instrumentation LED指示灯 Light emitting diodes Networks 人工检测 子区域 检查过程 汽车仪表 生长算法 自动检测方法 |
title | Automatic inspection of LED indicators on automobile meters based on a seeded region growing algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A24%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20inspection%20of%20LED%20indicators%20on%20automobile%20meters%20based%20on%20a%20seeded%20region%20growing%20algorithm&rft.jtitle=Frontiers%20of%20information%20technology%20&%20electronic%20engineering&rft.au=Zhou,%20Hong&rft.date=2010-03-01&rft.volume=11&rft.issue=3&rft.spage=199&rft.epage=205&rft.pages=199-205&rft.issn=1869-1951&rft.eissn=1869-196X&rft_id=info:doi/10.1631/jzus.C0910144&rft_dat=%3Cproquest_cross%3E2918722628%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918722628&rft_id=info:pmid/&rft_cqvip_id=33031685&rfr_iscdi=true |