Automatic inspection of LED indicators on automobile meters based on a seeded region growing algorithm

Light emitting diode (LED) indicators used on automobile meters are essential for safe driving and few errors can be tolerated. The current manual inspection approach can achieve only 95% accuracy rate in weeding out errors occurring in the production process. It is imperative to improve the accurac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of information technology & electronic engineering 2010-03, Vol.11 (3), p.199-205
Hauptverfasser: Zhou, Hong, Xu, Hai-er, He, Pei-qi, Song, Zhi-bai, Geng, Chen-ge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Light emitting diode (LED) indicators used on automobile meters are essential for safe driving and few errors can be tolerated. The current manual inspection approach can achieve only 95% accuracy rate in weeding out errors occurring in the production process. It is imperative to improve the accuracy of the inspection process to better achieve the goal of safe driving. This paper proposes an automatic inspection method for LED indicators for use on automobile meters. Firstly, red-green-blue (RGB) color images of LED indicators are acquired and converted into R, G, and B intensity images. A seeded region growing (SRG) algorithm, which selects seeds automatically based on Otsu's method, is then used to extract the LED indicator regions. Finally, a region matching process based on the seed and three area parameters of each region is applied to inspect the LED indicators one by one to locate any errors. Experiments on standard automobile meters showed that the inspection accuracy rate of this method was up to 99.52% and the inspection speed was faster compared with the manual method. Thus, the new method shows good prospects for practical application.
ISSN:1869-1951
2095-9184
1869-196X
2095-9230
DOI:10.1631/jzus.C0910144